# Sparse Label Learning

Final Presentation Group: team-3-for-the-win

21/07/2021

Team: Pavel, Gabriel, Cristian, Elena, Max Supervisors: Sandra Obermeier, Evgeniy Faerman

### Overview

- Concept, Setup, Models, Datasets
- Passive Learning Concept (clustering methods / sampling strategies), Active Learning Concept (outlook)
- Training Results
- Feature Quality Study
- Conclusion & Future Work

### Workflow



### Concept



#### "Sparse Label Learning"

- $\rightarrow$  only minority of training data labeled
- $\rightarrow$  Labeling is expensive!
- $\rightarrow$  Goal: Compare labelling strategies

## Models

| Model    | Architecture    | Pretrained |
|----------|-----------------|------------|
| Fixmatch | WideResNet 28x2 | No         |
| SSL      | WideResNet 50x2 | No         |
| Basic    | WideResNet 50x2 | No         |
| Transfer | WideResNet 50x2 | ImageNet   |

#### Hyperparameters

- Learning-rate: 0.03
- Optimizer: Adam
- Weight-decay: cosine-scheduler, 0.005 (0.01 for CIFAR100)
- Goal: Comparability

### Models: Semi-supervised Learning

#### FixMatch Approach: Pseudo-label + Consistency regularization



**Main takeaway**: SSL models can make use of unlabeled examples in addition to labeled data

 $\mathcal{L}_s(x, y, \theta) + \alpha \sum$  $\mathcal{L}_u(x,\theta)$ min θ  $(x,y) \in X_L$  $(x) \in X_{U}$ supervised loss unsupervised loss

### Models: Semi-supervised Learning

#### FixMatch Approach: Pseudo-label + Consistency regularization



Main takeaway: SSL models can make use of unlabeled examples in addition to labeled data

$$\underbrace{\min_{\theta} \sum_{(x,y)\in X_L}^n \mathcal{L}_s(x,y,\theta)}_{\text{supervised loss}} + \alpha \underbrace{\sum_{(x)\in X_U}^m \mathcal{L}_u(x,\theta)}_{\text{unsupervised loss}} 7$$

### Models: Semi-supervised Learning

#### FixMatch Approach: Pseudo-label + Consistency regularization



### Datasets

| ID    | Name     | n      | features | es classes |  |
|-------|----------|--------|----------|------------|--|
| 40927 | CIFAR_10 | 60_000 | 3073     | 10         |  |



| ID    | Name      | n      | features | classes |
|-------|-----------|--------|----------|---------|
| 41983 | CIFAR-100 | 60_000 | 3073     | 100     |

| ID    | Name | n     | features | classes |   | 14 734 | 11 379 | 9 981 | 9 266 | 7 704 | 7 6 1 4 | 6 705 | 6 254 | 6 692 |
|-------|------|-------|----------|---------|---|--------|--------|-------|-------|-------|---------|-------|-------|-------|
| 41081 | SVHN | 99289 | 3073     | 10      | 1 | 2      | 3      | 4     | 5     | 6     | 7       | 8     | 9     | 10    |

• Original

• Modified (10% of samples for 50% of classes)

# **Passive Learning**

Recap:

- Labeling is expensive!
- Idea: Find certain subsets of labeled data that lead to best training result.
- Use unsupervised selection methods (like clustering) on extracted dataset features before training. Start training with only 10/100/300 points per class as #selected\_samples.

Features: With different Neural Network pretrained on ImageNet, use feature extraction (representation at last layer) for each sample of our datasets.

# **Clustering Methods**

- Kmeans: simplest and popular unsupervised clustering
  - Move centroids to mean distance of assigned samples
- **Dbscan & optics:** density based clustering methods
  - minPts: The minimum number of points (a threshold) clustered together for a region to be considered dense.
  - $\circ$  eps ( $\epsilon$ ): A distance measure that will be used to locate the points in the neighborhood of any point.
  - 2 more parameters for optics : Core Distance and Reachability Distance
- **Coreset:** minimal set of data points (training samples) that allows the model to deliver approximately as good a performance as it would if the whole training data set was used.
  - We use K-Center-Greedy Coreset in our project, which has following steps:
     1 pick rendemby and center
    - 1.pick randomly one center
    - 2.choose next one which is furthest to the current centers as new center
    - 3.continue until all k centers are picked

# Sampling strategies

#### Kmeans:

- Take top x sample from centroid (#centroids < #samples to label)
  - i. Closest distance
  - ii. Any #x from cluster randomly
- Closest sample to each centroid (#centroids == #samples to label) ←

#### **Dbscan & optics:**

- Depending on #clusters := eps, minpts
- Take x from cluster randomly

#### Coreset:

- Take the output of the algorithm (k Centers) as the samples to label
- #centers == #points

# **Outlook: Active Learning**

- Used when there is a huge amount of unlabelled data
- Model is trained on small amount of data and an acquisition function, which determines which data point to label next
- Annotate selected samples and add them to training set
- Train new model on the bigger training set



# Active Learning Sampling Strategies

- **Pool-Based sampling:** there is a large pool of unlabelled data → we use the unlabelled training set
- Most informative instances are selected based on the acquisition function → first version with Random Sampling
- **Future Work** in acquisition functions:
  - Uncertainty Sampling used as informative measure
  - Acquisition function makes use of model's uncertainty
  - CNN with Dropout :
    - Bayesian Active Learning by Disagreement (BALD)

### **Training Results**

#### Random sampling [original, modified]

CIFAR10 model = basic model = transfer model = ssl model = fixmatch 1.0 \_\_\_\_\_ 0.8 ---\_\_\_\_\_\_ sampling ≥ 0.6 baseline og baseline mod random\_og random mod ٠ ₩ 1 0.4 0.2 0.0 100 3000 100 100 3000 100 1000 1000 3000 1000 1000 3000 Number Samples Labelled Number Samples Labelled Number Samples Labelled Number Samples Labelled

#### Clustered sampling [coreset, kmeans]



#### Clustered sampling [coreset, kmeans]



 $\rightarrow$  apparently not much better than random selection in most cases

#### We expected clustering (coreset/ kmeans) to at least do better than random?



Possible Explanation: Unbalanced selection of class labels

#### However, at least kmeans on the transformer weights looked promising ....



Seemingly balanced selection per class label, great NMI score (clustering assignments vs. true labels)

 $\rightarrow$  still didn't help notably with training



SVHN



(some experiments missing) 21

## DBSCAN & OPTICS (didn't work)

 $\rightarrow$  density based clustering does baldy with high-dimensional feature representations

What we tried (on 10k WRN50x2 representations of Cifar10):

- DBSCAN (default parameters):
  - 0 clusters
  - 10.000 noise points
- OPTICS (min-pts: 2)
  - Euclidean distance (301 clusters, 9339 npts)
  - Coside distance (950 clusters, 7748 npts)



### **DBSCAN Elbow method**

#### Elbow method:

- WRN50x2
- euclidean distance
- eps=35 min\_points=2

#### Results

- Estimated number of clusters: 2
- Estimated number of noise points: 13
- Homogeneity: 0.001
- Completeness: 0.119
- V-measure: 0.001
- Adjusted Rand Index: 0.000
- Adjusted Mutual Information: 0.000
- Silhouette Coefficient: 0.432



### **DBSCAN Elbow method**

#### Parameters:

- RN50
- euclidean distance
- eps=35 min\_points=2

#### Results

- Estimated number of clusters: 3
- Estimated number of noise points: 57
- Homogeneity: 0.001
- Completeness: 0.063
- V-measure: 0.002
- Adjusted Rand Index: 0.000
- Adjusted Mutual Information: 0.001
- Silhouette Coefficient: 0.219



### DBSCAN on VITs8 representations



 $\rightarrow$  Tried cosine distance with elbow method. Seemingly much more reasonable clusterings, but very imbalanced actually

### **OPTICS on VITs8 representations**



 $\rightarrow$  Best approach so far, although clusters still heavily skewed

(No balanced sampling possible  $\rightarrow$  no training)

### Why it's not working?



Try - other distances, - other <u>algorithms</u>, - other models

### In total



 $\rightarrow$  Training performance dependent on 'quality' of selected representations.

 $\rightarrow$  Assumption: Using "non-descriptive" features does not help with selecting representative samples for passive/active learning.

Problem: How to know which model delivers quality features that we can use for selection/ clustering?

 $\rightarrow$  run K Nearest Neighbor Classifier on extracted features

(extract features of Cifar10 train and test, then use extracted\_train to predict KNNC prediction for extracted\_test)

#### $\rightarrow$ Average KNNC performance for conventional CNN models

| extraction layer | euclidean distance                                                                                                                                    | 🖺 cosine distance                                                                                                                         | ■ #features                                                                                                                                                                                                                                                                                                                                                      | 🖺 batch size / total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                | 29.43                                                                                                                                                 | 37.07                                                                                                                                     | 3072                                                                                                                                                                                                                                                                                                                                                             | 100/ 10k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| avg'pool         | 54.02                                                                                                                                                 | 55.45                                                                                                                                     | 2048                                                                                                                                                                                                                                                                                                                                                             | 100/ 10k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| avg'pool         | 56.78                                                                                                                                                 | 58.00                                                                                                                                     | 2048                                                                                                                                                                                                                                                                                                                                                             | 100/ 10k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| classifier fc1   | 51.89 (25.94)                                                                                                                                         | 53.24 (26.62)                                                                                                                             | 4096                                                                                                                                                                                                                                                                                                                                                             | 50/ 5k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| classifier fc2   | 52.39 (25.69)                                                                                                                                         | 52.98 (26.49)                                                                                                                             | 4096                                                                                                                                                                                                                                                                                                                                                             | 50/ 5k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| avg'pool         | 45.45                                                                                                                                                 | 48.19                                                                                                                                     | 1024                                                                                                                                                                                                                                                                                                                                                             | 100 / 10k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | <ul> <li>extraction layer</li> <li>/</li> <li>avg'pool</li> <li>avg'pool</li> <li>classifier fc1</li> <li>classifier fc2</li> <li>avg'pool</li> </ul> | ■ extraction layer■ euclidean distance/29.43avg'pool54.02avg'pool56.78classifier fc151.89 (25.94)classifier fc252.39 (25.69)avg'pool45.45 | ■ extraction layer       ■ euclidean distance       ■ cosine distance         /       29.43       37.07         avg'pool       54.02       55.45         avg'pool       56.78       58.00         classifier fc1       51.89 (25.94)       53.24 (26.62)         classifier fc2       52.39 (25.69)       52.98 (26.49)         avg'pool       45.45       48.19 | E extraction layer         E euclidean distance         E cosine distance         E #features           /         29.43         37.07         3072           avg'pool         54.02         55.45         2048           avg'pool         56.78         58.00         2048           classifier fc1         51.89 (25.94)         53.24 (26.62)         4096           classifier fc2         52.39 (25.69)         52.98 (26.49)         4096           avg'pool         45.45         48.19         1024 |



#### (Example)

← k10NNC on WRN50x2 features (Big Variance even across batches, euclidean distance, cosine distance)  $\rightarrow$  Can we do better?

#### → Emerging Properties in Self-Supervised Vision Transformers (facebook)

the model learns a feature space that exhibits a very interesting structure. If we embed ImageNet classes using the features computed **using DINO**, we see that they organize in an interpretable way, with similar categories landing near one another. This suggests that the model managed to connect categories based on visual properties

→ extract features from VITs8 / VITs16 / VITb8
 (s = 'small' = 23M params, feature dimension 384,
 b = 'big' = 85M params, feature dimension 768 )

Patchsizes 8x8 (bigger patches) or 16x16 (smaller patches)



### **Feature Quality**

 $\rightarrow$  After applying appropriate resizing to 244x244 (imagenet dimensions)

 $\rightarrow$  VIT yields very accurate NNC predictions (>90%, notably better than non VIT models and good NMI score for k-means clustering)

| Aa Feature Extractor        | <pre>multiple extraction layer</pre> | 📰 euclidean distance | ≣ cosine distance | ≡ #features | 📰 batch size / total |
|-----------------------------|--------------------------------------|----------------------|-------------------|-------------|----------------------|
| DINO_ResNet_50 (23M params) | avg'pool (our extr.)                 | 62.06                | 64.70             | 2048        | 100/ 10k             |
| DINO_VIT_S8                 | avg'pool (our extr.)                 | 63.69                | 64.08             | 384         | 100/ <b>50k</b>      |
| DINO_VIT_S8 (no norm)       | avg'pool (our extr.)                 | 59.86                | 60.12             | 384         | 100/ 50k             |
| DINO_VIT_S16 (21M params)   | avg'pool (our extr.)                 | 62.27                | 62.75             | 384         | 100/ 50k             |
| DINO_VIT_S16 (no norm)      | avg'pool (our extr.)                 | 60.97                | 62.37             | 384         | 100/ 50k             |
| DINO_VIT_B8 (85M params)    | avg'pool (our extr.)                 | 59.68                | 60.05             | 768         | 100/ <b>25k</b>      |
| DINO_VIT_S8 (upscaled)      | avg'pool (our extr.)                 | 96.06                | 96.22             | 384         | 100/ <b>50k</b>      |
| DINO_VIT_S16 (upscaled)     | avg'pool (our extr.)                 | 92.90                | 92.76             | 384         | 100/ 10k             |
| DINO_VIT_B8 (upscaled)      | avg'pool (our extr.)                 | 95.24                | 95.12             | 768         | 100/ 10k             |

# (Scrum) Lessons learned

- Don't underestimate time to set up environment (MLflow, CI runner)!
- Having team-member with overview (i.e., a scrum master) greatly helps with issue management and communication.
- Uniformity across code-classes helps with iterating features.
- Estimating time easier for smaller, well defined tasks.

### **Conclusion & Future Work**

- Importance of sample selection shown, some approaches more impactful than others. Quality of sampling features are important
- SSL techniques very powerful in sparse settings
- Techniques show similar influence on all datasets

• Maybe compare with AutoEncoder features (even ones with inbuilt clustering loss or other passive/active learning helpers)

