
The
Partially Observable Travelling Officer

Problem
Hasan Turalic,
Nikolas Gritsch,
Oliver Schrüfer,
Philipp Althaus,
Selen Erkan

Hasan Turalic
Nikolas Gritsch
Oliver Schrüfer
Philipp Althaus

Selen Erkan
Supervisor: Niklas Strauss

Practical Big Data Science
Final presentation, 2021-07-21

Outline

1. Problem
2. Environment
3. Baseline agents

a. Random
b. Greedy
c. ACO

4. Advanced agents
a. PPO
b. DDQN (independent and shared policy)

5. Results
6. Lessons learned
7. Future work

2

Partially Observable Travelling Officer Problem

● What is POTOP?

● Research questions:
○ Single vs multi agent
○ Full vs partial observability

● Challenges
○ Dynamic environment
○ Semi MDP
○ POMDP

3

The Simulation Environment

Real-World Data
● Melbourne 2017 Dataset

○ Event based architecture
○ Train - Validation - Test split

● Open Street Maps Graph

OpenAI Gym Compatible Environment:
● State space

○ Parking spots and their information
● Action space

○ All edges that contain parking spots

4

The Simulation Environment: States

● State is passed from environment to agents as a numpy array:

5

One hot encoding of the spot Walking
time

current
time

Time of
arrival

of agent

Indicator
for

violation

Free Occupied In
Violation

Fined in h [0;1] [0;1] [-1;2]

1 0 0 0 0.21 0.6 0.7 -1

0 0 1 0 0.16 0.6 0.65 1.2

… … … … … … … …

Extensions

Max parking
time for spot

Parking spot booking

[0;1] Agent
1

Agent
2

Agent
3

Agent
4

0.166 1 0 0 0

0.083 0 1 0 0

… … … … …

Baseline Agents

1. Random
a. Random edge

● action space: adjacent edges of the street network
b. Random route

● action space: all edges in the graph
● follows shortest path to chosen edge

2. Greedy
● pick the node with the minimum total violation time

min(total violation time + walking time)

● in no violation case pick the closest node
3. Ant colony optimization

● every ant finds a path using probabilities assigned to the nodes
● pick the best path
● return the next node of the best path

6

Advanced Agents

● Single agent
○ PPO
○ DDQN

● Multiple agents
○ DDQN, PPO: Independent Q-Learning
○ DDQN: Shared policy
○ COMA
○ Q-MIX

● Extensions
○ Prioritized experience replay memory
○ Reward/gradient clipping
○ Using additional columns
○ Partial observability...

7

Advanced Agents: PPO

Proximal Policy Optimization:
Policy gradient method (online learning)

1. OpenAI (2017), balances:
a. sample efficiency,
b. ease of implementation
c. ease of tuning

2. Improves over costly trust region policy optimization
3. Advantage function predicts future reward in given state
4. Weight updates are clipped

8

Advanced Agents: DDQN

Double Deep-Q-Network:
Function approximation for Q-learning

1. Distance module
Input: precomputed distances

2. Resource module
Input: state

3. Final layers
Output: predicted Q-values

9Fig. 1: Architecture by Schmoll & Schubert (2020)

Advanced Agents: Multi-Agent Setting

1. Multi-agent approaches for DDQN
a. Independent Q-learning

separate network for each agent
b. Shared policy

Shared weights + memory
-> converges faster

2. Coma: multi-agent policy gradient method with
centralized critic, but decentralized actors

3. Q-mix: extension for DDQN

10

Training Process

Single-Agent

● Easiest task
 most time spent

● Finding bugs
● Finding optimal hyperparameters

Multi-Agent

● Easy transition after few adjustments

Multi-Agent with Partial Observability

● Huge jump in complexity
● Experiments started

11

Training Process

Single-Agent

● Easiest task
 most time spent

● Finding bugs
● Finding optimal hyperparameters

Multi-Agent

● Easy transition after few adjustments

Multi-Agent with Partial Observability

● Huge jump in complexity
● Experiments started

12

Results

Number of Agents

Algorithm 1 2 3 4

Random Edge 6.2

Random Route 55.5

Greedy 165.9

PPO (independent) 79.6

DDQN (independent)
161.1

DDQN (shared policy)

Evaluation Metric: Average violations caught per day

13

Results

Number of Agents

Algorithm 1 2 3 4

Random Edge 6.2 14.6 16.5 37.0

Random Route 55.5 95.4 125.0 152.4

Greedy 165.9 278.4 356.1 481

PPO (independent) 79.6 187.8 195.7 243.0

DDQN (independent)
161.1

260.1 333.9 358.0

DDQN (shared policy) 282.5 368.8 430.4

Evaluation Metric: Average violations caught per day

14

Results

15

Lessons Learned

● The environment must be reliable and efficient
○ write unit test
○ use profilers
○ use numpy over plain python objects/pandas dataframes as much as possible

● The NNs are very sensitive to input encoding
○ Test out different encodings
○ Normalize inputs
○ Test on reduced input matrices and see if performance actually decreases

● Visualizations can help to debug your program
○ For remote runs: record frames and convert to video

● Great workflow with ray-tune and ml-flow

16

Future Work

● Improve existing agents
○ deeper evaluate the current agents
○ try different input matrices
○ try different pre processing

● Improve agents for multi agent setting
○ QMix and Coma
○ Learning Communication between agents

● Improve agents for partial observability
○ Recurrent neural network (LSTM)

17

Summary

18

● Created an environment based on real world data to train and test our agents
● Implemented 5 different agents to solve the POTO-Problem

○ 3 conventional (random, greedy, aco) 2 reinforcement learning (PPO, DDQN)
● Extended agents and environment

○ handle multiple agents
○ partial observability

● Improved agents
○ random edge -> random route
○ prioritized replay memory
○ epsilon greedy exploration (epsilon decay)
○ improved input matrix (normalized, extra columns)
○ independent multi agents -> single shared policy

19

Insert cool environment gif here

Thank you!

Hasan Turalic
Nikolas Gritsch
Oliver Schrüfer
Philipp Althaus
Selen Erkan
Supervisor: Niklas Strauss

Questions?

Backup: Graph Size

20

Graph
● District: Docklands
● # nodes: 2911
● # edges: 6025
● # parking spots (state space): 531
● # edges with spots (action space): 188

Events
● # events (training): 4.6m
● # violations (training): 242.000
● avg. violations per day: 771

