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Outline
● Motivation

● Encoder-decoder architecture

● Experimental settings

● Experiment results (Point2Point,  Seq2Point,  Seq2Seq)

● Qualitative analysis (visualization)
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Motivation & Task
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Prior Knowledge
upper atmosphere, ionosphere           propagation of GNSS signals (delay)
ionospheric delays           electron density
electron density distribution

● D-layer, E-layer, F-layer
● F1-layer, F2-layer

electron density profile         peak of F2-layer (dominant contribution)
● topside ionosphere
● smooth transition into the plasmasphere

Previous models + time history (solar irradiation or geomagnetic indices)
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Sketch of Layers

5

predict the curve
● topside ionosphere
● transition of 

plasmasphere



Motivation & Task
Motivation
● The photons coming from the Sun ionize particles in the Earth’s atmosphere 
● The concentration of these charged particles is high enough to cause errors in GPS positioning of 

>100m
● Electron density profile

Task
● Predict 4 shape parameters of the ionospheric density profiles:

○ NmF2: F2-layer peak density
○ hmF2: F2-layer peak height
○ grad Hs and Hs: compute h, giving the decay with increased altitude

● Two kinds of input:
○ Shared input for all 4 targets
○ Time & location of measurement for each target

Multi-task learning

Spatio-temporal model
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Dataset
shared input
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- SYM-H: index that shows strength 
of the geomagnetic storms
- F10.7: solar index
- Kp: planetary geomagnetic index

target specific input

- GLat: geographic latitude of the 
measurement
- GLon: geographic longitude of the 
measurement
- LT: local solar time
- topalt: top altitude of the profile
- toplat: top latitude of the profile
- MLat: magnetic latitude of the 
profile
- MLon: magnetic longitude of the 
profile
- DOY: day of year

target

- NmF2: F2-layer peak density
- hmF2: F2-layer peak height
- Hs and grad Hs



Dataset split
● Dataset sorted by time and evenly split into 5 folds
● Input measurement every 5 min
● Train - Validation - Test split:

○ [0] - [1] - [2]
○ [0, 1] - [2] - [3]
○ [0, 1, 2] - [3] - [4]

from 2006 to 2019, 5 parts, each part 3 years
time series splitting versus random splitting
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Encoder-Decoder Architecture
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Model types: Sklearn
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- GLat

- Glon
- MLat
- Mlon
- topalt
- toplat
- toplon
- LT
- DOY
- SYM-H
- F10.7
- Kp

  Sklearn Model      target

                        E.g.
HistGradientBoostingRegressor Input    Output

Fea-
tures

NmF2,hmF2,
Hs,gradHs



Multi-task Encoder-decoder architecture

Shared Encoder

Decoder Decoder Decoder Decoder

Target 1 Target 2 Target 3 Target 4

Shared Input 

 

Target-sp
ecific
 Input 

 - SYM-H: index that shows strength 
of the geomagnetic storms
 - F10.7: solar index
 - Kp: planetary geomagnetic index

Location & 
time of target 
measurement:

 - GLat
 - GLon 
 - MLat
 - Mlon
 - topalt 
 - toplat 
 - toplon 
 - LT
 - DOY

4 targets are: 
 - NmF2
 - hmF2
 - Hs
 - grad Hs
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Model types: Point2Point

Input 
vector

Target

Latent Repr.

Encode

Decode
4 x

t
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Model types: Seq2Point

Latent Repr.

Encode (MLP, LSTM, Transformer, CNN, NODE…)

Decode

   t0                      t1               t2              t3                             tn  

4 x

Input 
sequence

Target
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Model types: Seq2Seq

Encode (LSTM, Transformer, CNN, NODE…)

Decode

   t0                      t1               t2              t3                             tn  

X 4
But different target 

timestamps for each 
target

(LSTM, Transformer, 
CNN, NODE…, here: 

LSTM)

Input 
sequence

Target
Sequence

Latent 
representation 
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Attention-LSTM model
● We have a well performing LSTM Seq2Seq model
● Each target timestamp takes the last encoder timestamp before it, which 

is a summarization of previous input timestamps
● We tried attention as another way of summarization
● Calculate the attention weights for input-target timestamp pair from a 

vector consisting:
○ difference of two timestamps
○ target-specific inputs at the target timestamp

● This allows more flexible summarization of input sequence
● Similar performance as LSTM Seq2Seq, faster since we don’t have LSTM 

encoder
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Transformer based models

16figure source: Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Encoder block + Decoder block

positional encoding

self-attention mechanism

model trained with:
- transformer encoder + lstm decoder
- transformer encoder + transformer encoder

linear layer (mapping)

positional encoding

Transformer encoder layer

decoders (target numbers: 4)



Convolutional Neural Network
● Usually used for computer vision applications
● Convolution operations can be done in 1D, 2D or 3D space
● 1D convolution used for sequential data
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   t0                      t1               t2              t3                             tn  

K = 3

t0- t2 Latent Representation
for t2



Neural Ordinary Differential Equation
● Continuous modeling of hidden state
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● Traditional Residual Network: 

● Neural ODE: 

● Motivation: model continuous evolution 
of hidden state over non-uniform time 
sequence

Figure source: Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud, Neural Ordinary Differential Equations, 32nd Conference on 
Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Experimental Settings
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Sklearn Model
● Baseline: 

                 DummyRegressor

● Tree - Based Model:
                 Randomforest
              HistGradientBoosting

● Non -Tree Based Model:
       LinearRegression

               Lasso
               Ridge
               KNeighborsRegression
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Experimental Setting
Evaluation  Metric
● MAPE(Mean Absolute Percentage Error)

            Statistical measure to define the accuracy of a machine learning algorithm
 
 

                where          -   actual value
                                                -  forecast value
                              -  number of times the summation iteration happens

                   
                     The lower the MAPE, the  better fit the model
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Experimental Setting
Evaluation Metric
● Spearman Correlation

    Statistical measurement of the strength of a monotonic relationship

            

               The closer  to ±1, the stronger the monotonic relation      
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where       - values of the x-variable in a sample
                 - mean of the values of the x-variable

             -  values of the y-variable in a sample

      -  mean of the values of the y-variable



Experimental Results
                           MAPE                             SC

Model NmF2 hmF2 Hs gradHs NmF2 hmF2 Hs gradHs

DummyRegressor 0.851 0.131 0.236 0.367 NaN NaN NaN NaN

HistGradientBoosting 0.4 0.1 0.184 0.293 0.772 0.719 0.638 0.589

PointToPoint 0.205 0.054 0.109 0.204 0.946 0.9 0.855 0.744

SequenceToPoint 0.202 0.052 0.112 0.198 0.947 0.906 0.859 0.748
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Further Details



Comparison between Seq2Seq Models
● Results from test set, fold id [4]
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Target
LSTM encoder + LSTM decoder Attention encoder + LSTM decoder

MAE S. corr. MAE S. corr.

Hs 5.438 0.849 5.569 0.839

grad Hs 0.014 0.738 0.014 0.736

NmF2 93436 0.945 94665 0.944

hmF2 14.77 0.898 14.94 0.895



Comparison between Seq2Seq Models (cont.)
● Results from test set, fold id [4]
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Target
Transformer encoder + LSTM decoder Transformer encoder + Transformer

MAE S. corr. MAE S. corr.

Hs 6.585 0.786 3.664 0.897

grad Hs 0.016 0.670 0.008 0.882

NmF2 127200 0.882 72823 0.906

hmF2 19.07 0.835 10.69 0.904



Neural ODE: Point2Seq attempt
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input at t0

● Result: even the best result has no 
improvement compared to the training 
mean, just predicting some constants. 

● Reason: one input vector does not have 
enough information for predicting the 
whole sequence. 

Latent States at t1, t2, … tn

Encoder 
MLP

ODE 
solver

State 
at t0 

Decoder MLP applied at t1, … tn
Positional 
inputs at  
t1, … tn

Output Predictions at t1, … tn



Neural ODE: Seq2Seq attempt
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● Result: MSELoss with StandardScaler: 

● Above are some preliminary results; 
further investigation needed.  

Latent States at t1, t2, … tn
ODE 

solver
State 
at t0 

Decoder MLP applied at t1, … tn
Positional 
inputs at  
t1, … tn

Output Predictions at t1, … tn

input 
sequence

Reversed RNN as Encoder

Target Train Loss Validate Loss

NmF2 0.17 0.31

hmF2 0.26 0.39

Hs 0.40 0.53

grad Hs 0.54 0.77



Qualitative Analysis
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Altitudinal variation
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Seasonal variation of NmF2 (MLP-P2P) 
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Double crests due to 
ionospheric fountain 
effect

discontinuity



Diurnal variation of NmF2 (MLP-P2P) 
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From 16:00 to 18:00
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Variation within 2h (LSTM Seq2Seq)



Variation within 2h (LSTM Seq2Seq)
From 10:30 to 12:30                                  From 6:00 to 8:00

Hypothesis: prediction improves within time series
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Conclusion
● Multi-task learning: predict 4 ionospheric density parameters

● Spatio-temporal models to capture different variations

● Encoder-decoder architecture: Point2Point, Seq2Point, Seq2Seq
○ Sequence information in both input & target improves prediction
○ Best results achieved by Transformer model 
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Thanks for your attention!
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