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Why Large Scale Graph Machine Learning?

● Many graph-structured real-world applications
○ Social Networks
○ Recommender Systems
○ Linked Web documents

● Real world data forms very large graphs
○ Billions of edges or millions of graphs

● Promising domain of active research
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What was the Task?

● Construct GNN for large scale graph data
● Keep as much information as possible

● OGB-LSC @ KDD Cup 2021: Link prediction on large scale graphs
○ Multi-relational graph
○ Graph consists of head-relation-tail triples
○ Predict the correct tail for a given head-relation pair
○ Provide the sorted top 10 tails for a given sample of 1001
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The Dataset • WikiKG90M
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Number of entities 87,143,637

Number of relations 1,315

Relation occurrence max 174,439,560 

Relation occurrence mean 381,110.63 

Number of feature dimensions 768

Number of training samples 501,160,482



The Dataset • WikiKG90M
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Degree Value

Outgoing mean 5.75

Outgoing max 8,320

Incoming mean 5.75

Incoming max 36,424,411

Outgoing

Incoming

degree

fraction of all nodes



Baseline
Models
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Entity Co-Occurrence

● Untrained baseline model
● Relations are ignored completely

● Scoring is based on head and tail occurrences
○ Given a head, the most common tail is scored 1
○ All other tails are scored 0
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Pseudo Typing

● Untrained baseline model
● Heads are ignored completely

● Scoring is based on relation and tail occurrences
○ Given a relation, the most common tail is scored 1
○ All other tails are scored 0
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Entity Co-Occurrence & Pseudo Typing

● Trained baseline model
● Uses the trained Entity Co-Occurrence & Pseudo Typing baselines as input

● Scores are derived from the input baselines
○ Weighted sum of the individual baseline scores
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Trained
Models
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MLP Embeddings Model

● Uses triples as input, no features
● Entities and relations are represented in vector space

○ Initiate embeddings with random values
○ Embeddings are passed through MLP
○ An interaction function is applied to the final embeddings

● High number of entities forces low dimensional embeddings
● MLP to increase complexity (16 ➡ 64 ➡ 32)
● Negative samples are generated by corruption
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Entity & Relation Feature Model

● Uses entity and relation features
○ Features are loaded on demand
○ Features are passed through MLP for “enhancement”
○ An interaction function is applied to the enhanced features

● Feature loading makes up most of training duration
● Negative samples are generated by corruption
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ComplEx with PyTorch BigGraph

● Distributed system for learning graph embeddings

● Designed for very large graphs

● Used to train the ComplEx Model:
○ Semantic matching model 

○ Calculates the matching latent semantics of entities and relations

embodied in their vector space representations

○ Based on complex Embeddings
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Graph Convolutional Networks (GCNs)

1. Nodes are represented by a vector
2. Vectors get aggregated for each node (“message”)
3. The vector of the current node gets update using the messages
4. Process can be repeated by  multiple layers
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SGCN

● Simplifying Graph Convolutional Networks
● Majority of the benefit arises from the local averaging
● Power of GCNs originates primarily from the repeated graph propagation
● Reduces complexity through removing the nonlinearities
● Does not negatively impact accuracy
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CompGCN

● Composition-based Multi-Relation GCN
● Uses inverse Edges
● Uses Embeddings for Relations and Entities

○ Using seperate weight matrix for relations
○ Access direct relation representations
○ Facing over-parameterization

● Special: Using subgraphs as batches 
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CompGCN with Graph Attention Layer Model

● Take the idea of “Attention”, to give each neighbour node unique weights
● Take the strategy of mask graph attention.

○ Calculate attention coefficient with neighbour
○ Multi-head Aggregation

● Benefits comparing with basic GCN
○ Can do inductive job
○ Give different weights to neighbourhoods
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Results
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Custom Split & Ranking

● OGB dataset split
○ Temporal split (September/October/November)
○ No access to testing data solution

● Custom dataset split
○ Random split from OGB training data
○ Same split percentages as the OGB split

● Evaluation metric: Mean Reciprocal Rank (MRR)
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Model Name OGB Validation MRR Custom Validation MRR Custom Training MRR

Entity Co-Occurrence 0.0030 0.0123 0.0122

Pseudo Typing 0.2280 0.1569 0.1569

Entity Co-Occurrence + Pseudo Typing 0.2281 0.1663 0.1662

Entity & Relation Features 0.4649 - -

MLP Embeddings - 0.1485* -

ComplEx with PyTorch BigGraph - - 0.0340*

CompGCN - - -

CompGCN with Graph Attention - - -

SGCN - - -

Random Model 0.0029 (50 runs) 0.0029 (50 runs) 0.0029 (50 runs)

* intermediary results on subset



Conclusion & Lessons Learned

● Working with large datasets is hard
○ Matrices, embeddings etc. get very large very quickly
○ Working memory must be managed efficiently
○ Frequent movement between CUDA and working memory
○ Project management and better training strategy are important

● Best performing model uses features
○ However, most models are still being trained and are improving
○ Difficult to draw conclusions currently.
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We are happy
to take your questions now!
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Appendix

Score-Function for ComplEx Model:

DistMult
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Appendix

Mean Reciprocal Rank:
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