Large Scale Graph ML 21.07.2021

Group 0 - Outliers

Magdalena Baumgärtl, Moritz Koch, Patrick Tamunjoh, Pia Hammer, Yiwei Li

Overview

- 1. Task description
- 2. Introduction to the dataset
- 3. Baseline models
- 4. Trained models
- 5. Results
- 6. Conclusion & Lessons learned

Why Large Scale Graph Machine Learning?

- Many graph-structured real-world applications
 - Social Networks
 - Recommender Systems
 - Linked Web documents
- Real world data forms very large graphs
 Billions of edges or millions of graphs
- Promising domain of active research

What was the Task?

- Construct GNN for large scale graph data
- Keep as much information as possible
- OGB-LSC @ KDD Cup 2021: Link prediction on large scale graphs
 - Multi-relational graph
 - Graph consists of head-relation-tail triples
 - Predict the correct tail for a given head-relation pair
 - Provide the sorted top 10 tails for a given sample of 1001

The Dataset • WikiKG90M

Number of entities	87,143,637
Number of relations	1,315
Relation occurrence max	174,439,560
Relation occurrence mean	381,110.63

Number of feature dimensions	768
Number of training samples	501,160,482

The Dataset • WikiKG90M

Baseline Models

Entity Co-Occurrence

- Untrained baseline model
- Relations are ignored completely
- Scoring is based on head and tail occurrences
 - Given a head, the most common tail is scored 1
 - \circ All other tails are scored O

Pseudo Typing

- Untrained baseline model
- Heads are ignored completely

- Scoring is based on relation and tail occurrences
 - \circ Given a relation, the most common tail is scored 1
 - \circ All other tails are scored O

Entity Co-Occurrence & Pseudo Typing

- Trained baseline model
- Uses the trained Entity Co-Occurrence & Pseudo Typing baselines as input
- Scores are derived from the input baselines
 - Weighted sum of the individual baseline scores

Trained Models

MLP Embeddings Model

- Uses triples as input, no features
- Entities and relations are represented in vector space
 - Initiate embeddings with random values
 - Embeddings are passed through MLP
 - \circ An interaction function is applied to the final embeddings
- High number of entities forces low dimensional embeddings
- MLP to increase complexity ($16 \rightarrow 64 \rightarrow 32$)
- Negative samples are generated by corruption

Entity & Relation Feature Model

- Uses entity and relation features
 - Features are loaded on demand
 - Features are passed through MLP for "enhancement"
 - An interaction function is applied to the enhanced features
- Feature loading makes up most of training duration
- Negative samples are generated by corruption

ComplEx with PyTorch BigGraph

- Distributed system for learning graph embeddings
- Designed for very large graphs
- Used to train the ComplEx Model:
 - Semantic matching model
 - Calculates the matching latent semantics of entities and relations embodied in their vector space representations
 - Based on complex Embeddings

Graph Convolutional Networks (GCNs)

- 1. Nodes are represented by a vector
- 2. Vectors get aggregated for each node ("message")
- 3. The vector of the current node gets update using the messages
- 4. Process can be repeated by multiple layers

SGCN

- Simplifying Graph Convolutional Networks
- Majority of the benefit arises from the local averaging
- Power of GCNs originates primarily from the repeated graph propagation
- Reduces complexity through removing the nonlinearities
- Does not negatively impact accuracy

CompGCN

- Composition-based Multi-Relation GCN
- Uses inverse Edges
- Uses Embeddings for Relations and Entities
 - Using seperate weight matrix for relations
 - Access direct relation representations
 - Facing over-parameterization
- Special: Using subgraphs as batches

CompGCN with Graph Attention Layer Model

- Take the idea of "Attention", to give each neighbour node unique weights
- Take the strategy of mask graph attention.
 - Calculate attention coefficient with neighbour
 - Multi-head Aggregation
- Benefits comparing with basic GCN
 - \circ Can do inductive job
 - \circ Give different weights to neighbourhoods

Results

Custom Split & Ranking

- OGB dataset split
 - Temporal split (September/October/November)
 - \circ No access to testing data solution
- Custom dataset split
 - Random split from OGB training data
 - Same split percentages as the OGB split
- Evaluation metric: Mean Reciprocal Rank (MRR)

Model Name	OGB Validation MRR	Custom Validation MRR	Custom Training MRR
Entity Co-Occurrence	0.0030	0.0123	0.0122
Pseudo Typing	0.2280	0.1569	0.1569
Entity Co-Occurrence + Pseudo Typing	0.2281	0.1663	0.1662
Entity & Relation Features	0.4649	-	-
MLP Embeddings	-	0.1485*	-
ComplEx with PyTorch BigGraph	-	-	0.0340*
CompGCN	-	-	-
CompGCN with Graph Attention	-	-	-
SGCN	-	-	-
Random Model	0.0029 (50 runs)	0.0029 (50 runs)	0.0029 (50 runs)

* intermediary results on subset

Conclusion & Lessons Learned

- Working with large datasets is hard
 - Matrices, embeddings etc. get very large very quickly
 - Working memory must be managed efficiently
 - Frequent movement between CUDA and working memory
 - Project management and better training strategy are important
- Best performing model uses features
 - However, most models are still being trained and are improving
 - Difficult to draw conclusions currently.

We are happy to take your questions now!

Appendix

Score-Function for Complex Model: $f_r(h,t) = \operatorname{Re}(\mathbf{h}^\top \operatorname{diag}(\mathbf{r})\bar{\mathbf{t}}) = \operatorname{Re}(\sum_{i=0}^{d-1} [\mathbf{r}]_i \cdot [\mathbf{h}]_i \cdot [\bar{\mathbf{t}}]_i)$

Appendix

Mean Reciprocal Rank:

$$ext{MRR} = rac{1}{|Q|} \sum_{i=1}^{|Q|} rac{1}{ ext{rank}_i}$$