

Convincingness of Emotional Argumentation

Practical Big Data Science
Chair of Database Systems and Data Science

Team Orange: Johanna Reiml, Shaoying Liu, Petros Isaakidis, Severin Schmid, Isabelle Mayerhofer

21.07.2021

Wissenschaftlicher Betreuer: Michael Fromm, Evgeniy Faerman Verantwortlicher Professor:

Prof. Dr. Thomas Seidl

Agenda

- Motivation and research questions
- Methods:
 The datasets and preprocessing
 Manual data annotation
 The emotion detection framework
- Results: Training and evaluation
- Analysis and summary

Motivation and research questions

Motivation

Combine Emotion Detection (ED) and Argument Mining (AM)

ED: Method to detect emotions in sentences [1]

AM: Detect arguments and their quality [2]

Possible areas of application:

- Argument search engine
- Detect emotions in political speeches to persuade/influence audience
- Detect where emotions and facts start to blurr

Motivation

When analyzing arguments, we usually focus on **logos** In our case, we try to focus on **pathos**

Our approach:

- Train a model based on emotion detection datasets
- Apply it to argument mining datasets

[9]

Approach overview

Training:

Sentences from ED dataset

Pre-trained BERT model [3]

Prediction:

Sentences from AM dataset

BERT trained on Emotion Detection [3]

Output:

Sentence is ...

- Non-Emotional/Emotional
- Neutral/Positive/Negative

Research questions

Hypotheses:

- We can build a neural network that can detect emotions
- Some topics are more emotional than others
- There exists a correlation between stance and emotion
- There exists a positive correlation between argumentativeness and emotion intensity

The datasets and preprocessing

The Emotion Detection datasets

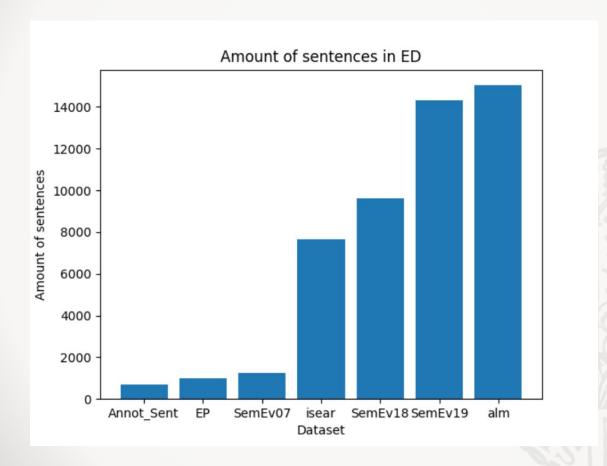
Form: Children's stories, reactions, news headlines, tweets, dialogues

Children's stories: "I well know your desire, said the cat"

Headlines: Bombers kill shoppers

Tweets: My heart is so happy I want to explode. **\bigode**, This time in 2 weeks I will be 30... *\overline{\cdots}

The Emotion Detection datasets



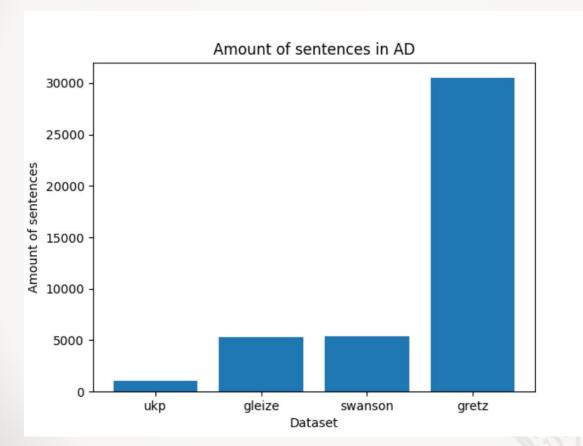
The Argument Mining datasets

Topics covered: evolution, gun control, gay marriage, Firefox vs. Internet Explorer, abortion...

Gay marriage: If it walks like a marriage, talks like a marriage, and looks like a marriage, why call it something else?

Firefox vs. Internet Explorer: Firefox has nothing to do with Apple or Steve Jobs.

The Argument Mining datasets



Preprocessing and annotation scheme

Data cleaning & integration: Cleaning of datasets, e.g. deleting emojis (via RegEx), transform different formats (txt, tar etc.) to csv

Annotation scheme:

- ED datasets:
 - 2-class setting: emotional vs. non-emotional
 - 3-class setting: positive, neutral, negative

AM datasets: argument, arg-strength, topic

Labeling sentences

[3]

Each of us labeled 600 arguments for emotionality

Explicit

"we should abolish zoos, putting wild animals in confined cages, in climates completely unsuitable for them, is cruel."

Rules:

- 'explicit' emotional arguments express author's emotionality
- 'implicit' emotional arguments target reader's emotions
- 'neutral' arguments are neither explicit nor implicit

Calculating the annotation agreement

Agreement table

document_id	annotation		document_id	anno	tation	
	Explicit	Implicit	Neutral		Emotional	Non-emotional
0	3	3	0	0	6	0
1	0	2	4	1	2	4
2	1	1	4	2	2	4
599	0	1	5	599	1	5

Krippendorff's Alpha

0.245 - for implicit/explicit/neutral

0.313 - for emotional/non-emotional

Emotion Detection framework

Key facts about BERT

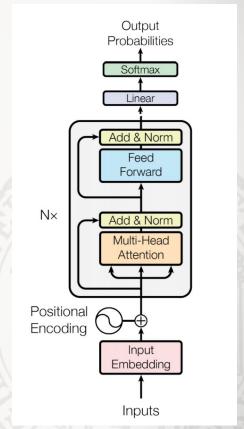
Bidirectional Encoder Representations from Transformers:

- Bidirectionally contextual model
- Introduces new self-supervised objective(s)
- Completely replaces recurrent architectures by Self-Attention + is also simultaneously able to include bidirectionality

[3]

BERT model architecture

- 1. Input is converted into multiple embeddings
- 2. Uses a stack of encoders to create vector representations for each input
- 3. Vector representation is fed into linear layer
- 4. Linear layer is fed into softmax, which gives us a probability distribution for the labels



[4]

Emotion Detection framework

- Started with a self-made framework for BERT for training and evaluating the model with pytorch
- Framework mostly worked, but was very basic
- Later, discovered HuggingFace, a state-of-the-start NLP library specifically for transformer models
- Rewrote our framework based on the HuggingFace Trainer

[5]

MLflow

- MLflow tracking server for our evaluation
- Setup was easy with docker
- Uses a S3 storage (minio) for storing the models
- HuggingFace already has MLflow integration built in

[7]

Training and evaluation

Training our emotion detection model

- Avoid Overfitting:
 - Early Stopping method
 - Label weights in loss function
- F1-Macro of 87.4% for non-emotional/emotional setting

Emotion Detection evaluation results

Results with three-class setting

Dataset	F1- Score [%]	F1- Positive [%]	F1- Negative [%]	F1- Neutral [%]
SemEval_2018	62,1	86,2	88,9	11,3
SemEval_2007	64,6	68	79,5	46,4
EP	72,1	82,1	86	48,4
Annot_sent	55,4	82,6	83,5	0
Alm	61,5	54,6	54,2	75,7
Combined	83,6	79,5	91,2	80,2

Results with two-class setting

Dataset	F1- Score [%]	F1- Emotional [%]	F1-Non Emotional [%]
SemEval_2018	55,6	97,3	13,8
SemEval_2007	64,6	80,3	48,9
EP	67,5	83,1	51,9
Annot_sent	49,6	99,3	0
Alm	67,4	63,1	71,6
Combined	87,4	94	80,8

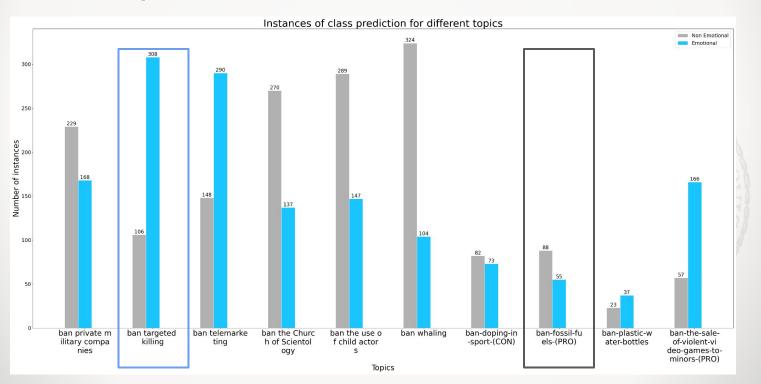
Argument Mining evaluation results

Two-class setting:

- Annotators agreement ≥ 4 → f1-score: 70% (523 sentences)
 (avg. human performance: 80%)
- Annotators agreement ≥ 5 → f1-score: 76% (340 sentences)
 (avg. human performance: 90%)
- Annotators agreement = $6 \rightarrow f1$ -score: 80% (156 sentences)
- Annotators agreement ≥ 4: Baseline evaluation with "always neutral"
 → f1-score: 57%
- ⇒ Our emotion model works with arguments!

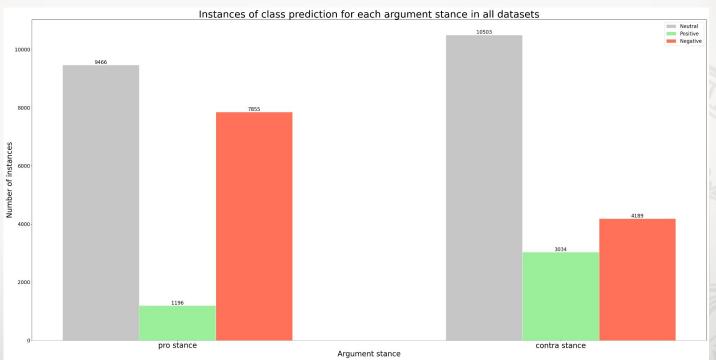
Hypothesis 1 - Some topics are more emotional than others

Hypothesis accepted **V**



Hypothesis 2 - There is a correlation between argument stance and emotion

Hypothesis rejected X



Hypothesis 3 - There is a positive correlation between argumentativeness and emotion intensity

Hypothesis rejected X

- no clear pattern indicating a positive correlation
 - \circ positive arguments \Rightarrow likely less convincing
 - non-emotional vs emotional ⇒ no clear correlation

Swanson	negative	positive	neutral
arg_strength_mean	0,53	0,42	0,54
pearson	-0,05	-0,20	-0,02
spearman	-0,04	-0,19	-0,05

Swanson	emotional	non-emotional
arg_strength_mean	0,51	0,54
pearson	-0,03	-0,06
spearman	-0,05	-0,05

Analysis

Evaluation of the annotated data

The F1 score of our model given our annotated arguments with min. 5 agreements

Dataset	F1 score
UKP	0.778
Gleize	0.752
Gretz	0.798
Swanson	0.706

Evaluation of the annotated data

The F1 score of our model given our annotated arguments with min. 5 agreements

Topic	F1 score
All topics	0.765
Death Penalty	0.635
Evolution vs Creation	0.817
Gun Control	0.798
William Farquhar ought to be honoured as the rightful founder of Singapore	0.467
Gay Marriage	0.707
Evolution	0.487

Error analysis

⇒ The model seemingly tends to predict sentences as emotional, if they contain emotional keywords such as "like"

⇒Example: "Like it or not Social Media is part of living in 2018. Sure it has problems, yes it has advantages and my 2 cents is everything in moderation."

- Ground truth: Neutral
- Model prediction: Emotional

Error analysis

⇒ The model seemingly tends to predict that sentences containing "I" and "you" as emotional, but "they" and "we" are neutral

⇒Example: "You see, what you fail to realize is that your

Amendment...IS DEAD!"

Ground truth: Emotional

Model prediction: Emotional

Summary and outlook

Research questions - Conclusion

- We can build a neural network that can detect emotions
- Some topics are more emotional than others
- X There exists a correlation between stance and emotion
- X There exists a positive correlation between argumentativeness and emotion intensity

Future work

- Multiple architectures (LSTM) or other transformer approaches
- Fine-tuning on the emotion annotated arguments
- Including of the topic in the training process
- Analysis with more detailed emotion labels

Sources

- [1] Alswaidan, Nourah, and Mohamed El Bachir Menai. "A survey of state-of-the-art approaches for emotion recognition in text." Knowledge & Information Systems 62.8 (2020).
- [2] Trautmann, Dietrich, et al. "Fine-grained argument unit recognition and classification." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. O5. 2020.
- [3] http://jalammar.github.io/illustrated-bert/
- [4] Deep Learning for Natural Language Processing (WS2O/21) BERT & Co.
- [5] https://huggingface.co
- [6] https://www.mlflow.org
- [7] https://www.docker.com
- [8] https://inception-project.github.io
- [9] https://www.storyboardthat.com/de/articles/e/ethos-pathos-logos

Thank you for your attention