Generalization Across Argument Mining Datasets

 \mathbf{O} \mathbf{O} \mathbf{O}

Supervisor: Michael Fromm

Members: Caroline Frank, Dominik Seeholzer, Elvira Siegel, Stefanie Kunze & Yindong Wang

Argument Mining

Topic: Death Penalty

It does not deter crime and

it is extremely expensive to administer . CON

Topic: Gun Control

Yes, guns can be used for protection

but laws are meant to protect us_{PRO} , too .

Fine-Grained Argument Unit Recognition and Classification

Examples of Argument Models

Argument Mining for Cross Topic Heterogeneous Sources 2018

• Is it beneficial to include data from different argument models to increase accuracy?

• Is it beneficial to include data from different argument models to increase accuracy?

→ Using 5 different annotated datasets and convert the labels

• Is it beneficial to include data from different argument models to increase accuracy?

→ Using 5 different annotated datasets and convert the labels

• How well do natural language processing (NLP) machine learning models generalize across argument mining datasets?

• Is it beneficial to include data from different argument models to increase accuracy?

→ Using 5 different annotated datasets and convert the labels

• How well do natural language processing (NLP) machine learning models generalize across argument mining datasets?

→ Train on dataset X and test on dataset Y

• Is it beneficial to include data from different argument models to increase accuracy?

→ Using 5 different annotated datasets and convert the labels

 How well do natural language processing (NLP) machine learning models generalize across argument mining datasets?
 Train on dataset V and test on dataset V

 \rightarrow Train on dataset X and test on dataset Y

• Is "argumentativeness" similarly captured across datasets?

- Is it beneficial to include data from different argument models to increase accuracy?
 - → Using 5 different annotated datasets and convert the labels
- How well do natural language processing (NLP) machine learning models generalize across argument mining datasets?
 → Train on dataset X and test on dataset Y
- Is "argumentativeness" similarly captured across datasets?
 → Train with Multitask-Model on all datasets

Dataset Statistics (Comparison)

Dataset	Size	Number of Topics
AURC	8000	8
СТАМ	25489	8
CWAM	30422	218
PASPE	6547	402
PD	29532	0

1. Fine-Grained Argument Unit Recognition and Classification (AURC)

Торіс	Sentence	Label
school uniforms	Uniforms not only save money but also time.	Pro

ID	Торіс	Sentence	Label
1	school uniforms	Uniforms not only save money but also time.	supporting-argumentative

 $\begin{array}{ll} \mbox{Pro} & \rightarrow \mbox{supporting-argumentative} \\ \mbox{Con} & \rightarrow \mbox{attacking-argumentative} \\ \mbox{Non} & \rightarrow \mbox{non-argumentative} \end{array}$

2. Cross-topic Argument Mining from Heterogeneous Sources (CTAM)

Торіс	Sentence	Annotation
nuclear energy	Nevertheless, the problems of nuclear waste, safety and proliferation still remain to be solved.	Argument_against

ID	Торіс	Sentence	Label
1	nuclear energy	Nevertheless, the problems of nuclear waste, safety and proliferation still remain to be solved.	attacking-argumentative

Argument_for	\rightarrow	supporting-argumentative
Argument_against	\rightarrow	attacking-argumentative
NoArgument	\rightarrow	non-argumentative

3. Corpus Wide Argument Mining - a Working Solution (CWAM)

Wikipedia ID	MotionText	DomainConcept	Evidence	acceptance Rate
1345	Casinos should be banned	Casino	"Activist groups argued that a casino could also lead to undesirable activities often "	0.95

ID	Торіс	Sentence	Label
1345	Casino	"Activist groups argued that a casino could also lead to undesirable activities often "	attacking-argumentative

acceptanceRate < 0.6</td>non-argumentativeacceptanceRate \geq 0.6attacking/supporting (depends on Motion Text)

4. Parsing Argumentation Structures in Persuasive Essays (PASPE)

First row (File1)	Sentence (File 2)	Label (File 2)
Should students be taught to compete or to cooperate?	we should attach more importance to cooperation during primary education.	MajorClaim

ID	Торіс	Sentence	Label
1	Should students be taught to compete or to cooperate?	we should attach more importance to cooperation during primary education.	non-argumentative

402 Essays with 2 files per essayPremise \rightarrow argumentativeFile 1: topic + all sentences in essay | File 2: sentence + labelClaim \rightarrow non-argumentativeMajorClaim \rightarrow non-argumentative

5. Yes, we can! Mining Arguments in 50 Years of US Presidential Campaign Debates (PD)

ID	Sentence	Label
9369	It's been a time, therefore, of illusion and false hopes, and the longer it continues, the more dangerous it becomes.	Premise

ID	Торіс	Sentence	Label
9369	None	It's been a time, therefore, of illusion and false hopes, and the longer it continues, the more dangerous it becomes.	argumentative

 $Premise \rightarrow argumentative \ | \ Claim \rightarrow non-argumentative \ | \ Others \rightarrow non-argumentative$

Histogram Placeholder

What is BERT?

• Stands for:

- Bidirectional Encoder Representations from Transformers
- key technical innovation:
 - Apply the bidirectional training on **Transformers**
 - In contrast to previous models: left to right, right to right or combined training of both
- Transfer Learning
 - Pre-training model for new purpose-specific task

What is BERT?

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

2 - Supervised training on a specific task with a labeled dataset.

Model illustration Example: Sentence Classification

• Binary classifier:

- 'Spam',
- 'Not Spam'

• Multi-label classifier:

- 'Spam',
- 'Not Spam',
- 'Promotion'
- \circ 'Social'

Possible downstream tasks of BERT

- Classification tasks
 - \circ sentiment analysis
 - argument mining
- Question Answering
- Named Entity Recognition
- • • •

Our Framework

• Topic Tokenizer: Include topic information in sentence tokenization

• Percentile Max Sequence Length: Determine max length of tokenized sentences based on percentile (improves runtime)

[CLS] Very long sentences are cut [MASK] after a certain amount of [SEP] nuclear energy [SEP][CLS] Short sentences are padded [MASK] [padding] ...[SEP] nuclear energy [SEP]

 Maximize Batch Size: Faster convergence due to maximal variance

• Weighted Batch Sampling & Loss Calculation: Prevent big datasets from dominating training

• Early Stopping: Stop training after validation loss increases consecutively

• Weighted cross entropy calculation: Useful for unbalanced training datasets

• Other:

- Monitoring with **MIFLow**
- Model/Dataset loading & remote artifact logging
- Various **Scenarios** (Cross-topic, In-topic, Cross-val-topic)
- Caching Features, Max-Token-Length
- Extendable for more tasks

Training Arguments

- Adam Epsilon = 1e-08
- Learning Rate = 2e-05
- Patience = 5 (Validation after half epoch)
- Max Sequence Length Percentile = 0.95
- Scenario = Cross-Topic
- **Pre-trained Model** = Bert-base-uncased

Motivation Recap

- 1. Is it beneficial to include data from different argument models to increase accuracy?
- 2. How well do NLP machine learning models generalize across datasets?
- 3. Is "argumentativeness" similarly captured across datasets?

Results and Experimental Setup

- 1. Is it beneficial to include data from different argument models to increase accuracy?
- Annotations are how the data is labeled by argument structure
 - Pro-Con-Non (AURC, CTAM)
 - Acceptance Score (CWAM)
 - MajorCLaim, Claim, Premise (PASPE)
 - Claim-Premise-Other (PD)
- First: Old labels vs New labels
- Second: Single vs Multi-task model:
 - Single Task: Training and testing on one dataset
 - Multi-task: Training on all datasets then evaluating each dataset separately

F1 Macro Results Old vs New Label

Is it beneficial to include data from different argument models to increase accuracy?

DATASET	Single Task Old Labels	Single Task New Labels
AURC	0.7642	_
СТАМ	0.6796	_
CWAM	0.6543 (Spearman)	0.7194 (F1 Macro)
PASPE	0.6192	0.4745
PD	0.8492	0.984

F1 Macro Results Single vs Multi-task

Is it beneficial to include data from different argument models to increase accuracy?

DATASET	Single Task New Labels	Multi Task New Labels
AURC	0.6994	0.5426
СТАМ	0.6468	0.5359
CWAM	0.5195	0.4989
PASPE	0.3392	0.3867
PD	0.9827	0.749

F1 Macro Results Single vs Multi-task

Is it beneficial to include data from different argument models to increase accuracy?

DATASET	Single Task Old Labels	Multi Task Old Labels
AURC	0.6994	0.6495
СТАМ	0.6468	0.6065
CWAM	0.6378 (Spearman)	0.5894 (Spearman)
PASPE	0.5452	0.5604
PD	0.8477	0.6812

Experimental Setup

2. How well do natural language processing (NLP) machine learning models generalize across datasets?

- Trained model on one dataset
- Evaluated on other datasets
- No topic information included when training

How well do natural language processing (NLP) machine learning models generalize across datasets?

EVALUATED	AURC	СТАМ	CWAM	PASPE	PD
AURC	0.668	0.6038	0.4733	0.2148	0.4280
СТАМ	0.644	0.6472	0.4871	0.2086	0.3982
CWAM	0.4396	0.4202	0.5144	0.2199	0.4268
PASPE	0.1846	0.3065	0.2003	0.3315	0.4515
PD	0.2622	0.2806	0.2384	0.2124	0.9853

How well do natural language processing (NLP) machine learning models generalize across datasets?

EVALUATED	AURC	СТАМ	CWAM	PASPE	PD
AURC	0.668	0.6038	0.4733	0.2148	0.4280
СТАМ	0.644	0.6472	0.4871	0.2086	0.3982
CWAM	0.4396	0.4202	0.5144	0.2199	0.4268
PASPE	0.1846	0.3065	0.2003	0.3315	0.4515
PD <	0.2622	0.2806	0.2384	0.2124	0.9853

How well do natural language processing (NLP) machine learning models generalize across datasets?

EVALUATED	AURC	СТАМ	CWAM	PASPE	PD
AURC	0.668	0.6038	0.4733	0.2148	0.4280
СТАМ	0.644	0.6472	0.4871	0.2086	0.3982
CWAM	0.4396	0.4202	0.5144	0.2199	0.4268
PASPE	0.1846	0.3065	0.2003	0.3315	0.4515
PD	0.2622	0.2806	0.2384	0.2124	0.9853

Word Cloud

With topic words:

able make end in learning 5 prob1 experience provide err technology place tion animal better counti the world σ educ thing dge **(**) even Ē 0a may e way different' wi11 computer

PES

Results

3. Is "argumentativeness" similarly captured across datasets?

- Single-task model: Training and testing on one dataset
- Multi-task model: Training on all datasets then evaluating each dataset separately on trained model

F1 Macro Results

Is "argumentativeness" similarly captured across datasets?

	Single Task		Multi Task	
DATASET	Old Labels	New Labels	Old Labels	New Labels
AURC	0.6994	-	0.6495	0.5426
СТАМ	0.6468	-	0.6065	0.5359
CWAM	0.6378	0.5195	0.5894	0.4989
PASPE	0.5452	0.3392	0.5604	0.3867
PD	0.8477	0.9827	0.6812	0.749

Is "argumentativeness" similarly captured across datasets?

EVALUATED TRAINED	AURC	CTAM	CWAM	PASPE	PD
AURC	0.668	0.6038	0.4733	0.2148	0.4280
СТАМ	0.644	0.6472	0.4871	0.2086	0.3982
CWAM	0.4396	0.4202	0.5144	0.2199	0.4268
PASPE	0.1846	0.3065	0.2003	0.3315	0.4515
PD	0.2622	0.2806	0.2384	0.2124	0.9853

Results

Does including topic while training increase accuracy?

- With and without topic
- New Labels
- Single-task model: Training and testing on one dataset
- Multi-task model: Training on all datasets then evaluating each dataset separately on trained model

F1 Macro Results

Does including topic while training increase accuracy?

DATASET	Single Task		Multi Task	
DATASET	Without Topic	With Topic	Without Topic	With Topic
AURC	0.6994	0.6746	0.6495	0.4544
СТАМ	0.6468	0.6618	0.6065	0.4353
CWAM	0.5195	0.5643	0.5894	0.5233
PASPE	0.3392	0.3918	0.5604	0.364
PD	0.9827	-	0.6812	0.7359

Conclusion

Is it beneficial to include data from different argument models to increase accuracy?

• No, did not improve results except for the small dataset PASPE

Conclusion

Is it beneficial to include data from different argument models to increase accuracy?

• No, did not improve results except for the small dataset PASPE How well do natural language processing (NLP) machine learning

models generalize across datasets?

- Datasets do not generalize well with the BERT model
 - Argument structure important
 - AURC and CTAM performed well but have same topics and argument structure

Conclusion

Is it beneficial to include data from different argument models to increase accuracy?

• No, did not improve results except for the small dataset PASPE How well do natural language processing (NLP) machine learning

models generalize across datasets?

- Datasets do not generalize well with the BERT model
 - Argument structure important
 - AURC and CTAM performed well but have same topics and argument structure

Is "argumentativeness" similarly captured across datasets?

- Not similarly captured across datasets
 - If it were, then they would generalize well
 - Only similar datasets achieved similar results

Future work

- Test more datasets and see which generalize well with each other
 - Do some argument structures work better with other argument structures?
- Knowledge distillation (a teacher-student model)
 - Has previously shown to improve multi-task
- Different models/tokenizers other than BERT/Hugging-Face

Thanks for your Attention!

F1 Micro Results Single vs Multi-task

Is it beneficial to include different annotated data to increase accuracy?

DATASET	F1 Micro - Single Task Old Labels	F1 Micro - Multi Task Old Labels
AURC	0.7642	0.7622
СТАМ	0.6796	0.669
CWAM	0.6543	0.5896
PASPE	0.6192	0.6327
PD	0.8492	0.6812

F1 Micro Results Old vs New Label

Is it beneficial to include different annotated data to increase accuracy?

DATASET	F1 Micro - Single Task Old Labels	F1 Micro - Single Task New Labels
AURC	0.7642	0.7642
СТАМ	0.6796	0.6796
CWAM	0.6543	0.7194
PASPE	0.6192	0.4745
PD	0.8492	0.984

F1 Micro Results Single vs Multi-task

Is it beneficial to include different annotated data to increase accuracy?

DATASET	F1 Micro - Single Task New Labels	F1 Micro - Multi Task New Labels
AURC	0.7642	0.6969
СТАМ	0.6796	0.6201
CWAM	0.7194	0.7225
PASPE	0.4745	0.6962
PD	0.984	0.7594

F1 Micro Results

Is "argumentativeness" similarly captured across datasets?

DATASET	Single Task		Multi Task	
	Old Labels	New Labels	Old Labels	New Labels
AURC	0.7642	-	0.7622	0.6969
СТАМ	0.6796	-	0.669	0.6201
CWAM	0.6543	0.7194	0.5896	0.7225
PASPE	0.6192	0.4745	0.6327	0.6962
PD	0.8492	0.984	0.6812	0.7594

Word Cloud

With topic words

Without topic words

Word Cloud

Without topic words:

Argument vs Argumentativeness Definition

Components of an argument are claims and premises.

- The simplest structure of an argument is a combination of premises which are conveyed to justify a certain claim. A crucial part of an argument is a claim or the conclusion.
- Asserting a claim is the main goal of an argument made by someone, which can be true or false.
- The claim is usually supported by at least one evidence or premise. These premises are stated such that the claim of the argument is reasonable. One cannot expect the claim of their argument to be accepted by others if they do not have strong premises to justify the claim.
- Thus, another important component of the argument are premises for backing the claim.
- There are some structures that premises and claims may follow to form an argument.
- These structures are not definitive proof of existence of an argument and are not as common in oral debates than in written persuasive essays. However, they can be helpful to trace arguments. After detection of these structures we should investigate from the context, if the structure is used to develop an argument

"We define an argument as a span of text expressing evidence or reasoning that can be used to either support or oppose a given topic. An argument need not be "direct" or self-contained—it may presuppose some common or domain knowledge, or the application of commonsense reasoning—but it must be unambiguous in its orientation to the topic."

Introduction

Ex. Claim: Nuclear Energy is good

Preprocessing

Old labels vs. New labels

Dataset	Old Label	New Label
AURC/ CTAM	Con, Pro, Non	Attacking-argumentative, Supporting-argumentative, Non-argumentative
CWAM	acceptanceRate [0.0, 1.0]	Attacking-argumentative, Supporting-argumentative, Non-argumentative
PASPE	MajorClaim, Claim, Premise	Attacking-argumentative, Supporting-argumentative, Non-argumentative
PD	Premise, Claim, Other	Argumentative, Non-argumentative

Scores

Accuracy is the number of correctly predicted data points out of all the data points

$$Precision_{c} = \frac{True Pos_{c}}{True Pos_{c} + False Pos_{c}}$$

$$Recall_{c} = \frac{True Pos_{c}}{True Pos_{c} + False Neg_{c}}$$

$$F1 Score_{c} = \frac{2 \times Precision_{c} \times Recall_{c}}{Precision_{c} + Recall_{c}}$$
Macro F1 Score = $\frac{1}{n} \sum_{c=i}^{n} F1 Score_{c}$