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https://en.wikipedia.org/wiki/Van_Allen_radiation_belt
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Introduction

Energetic particles

e .. are hazard for modern spacecrafts (e.g., satellites)
e .. contaminate data in space observation (e.g. XMM)

Such contamination

e .. could cause severe data loss
e .. is highly dynamic
e .. is not yet well understood by the physicists
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e Proton Intensities on 7 Energy
Channels (p1 - p7)

e Positions (Coordinates, Distance from
Earth)
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e Solar Wind Activity (Speed, Density,
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Field Line to the Earth
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Approach 1

Basic architecture for each channel 1-7:

e Input + OM NI, — Prediction of proton intensities at timestamp ¢
o Additional features: Average of the last 1, 2, 4, 8, 16 ... hours of data
e Output: Proton intensities at timestamp ¢ for channel p

Proton Intensity
OMNI Features rdist" Position Avg attime t

‘00 .0o0000000 — I —o

@@ . o o =
AdaBoost
@@ . 0 0

\/Average J

Input Data Model Output
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Approach 1

Tree-Based

e Averaging:

— Averages independent estimators

— Low variance

— ExtraTrees, RandomForest
e Boosting:

— Sequentially combined weak estimators

— Robust, works well with non-linear decision boundaries

— AdaBoost, HistGradientBoosting, GradientBoosting, LightGBM
e Decision Trees (Regression Trees):

— Simple decision rules
— Low costs
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Approach 1

Non Tree-Based

e Linear:

— Linear combination of features
— LarsRegression, RidgeRegression

e kNeighborsRegression
Baseline:

e Mean: Predicts the mean of a channel
e Historical Binning: Predicts mean over an according spatial bin
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Approach 2 (DeepHorizon)
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Approach 2 (DeepHorizon)

Group: Deep Horizon

Proton intensities:
e For a point p in 3D space (i.e. (z,y, z))
o Attimet+ A
Parameters:
e Sequence: 3 hours
e Forecast: 5 minutes
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Approach 2 (DeepHorizon)

Model Class Model(s) Inductive Bias
LSTM / .
RNN GRU Sequentiality
CNN (Causal) CNN (TCN) Locality
Neural ODE

Differential Equation Continuity

/ Neural CDE
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Approach 2 (DeepHorizon)

Idea: Example:

° .Learn the rate of change y=122+5
Recipe: of =%

e Learn derivative f, = 222

e Integrate over derivative Fy = [ fs Beffectcase:

e Solve differential equation by adding . 9% d
initial condition 2o + [ fo Ylearned =0 + [ 2x dx

ylearned(5) =5 + 25 =30 = y(5)
Final Model:

Y~ fé(zT), where z; = 2z + fg fo(zs)ds and zo = Kg(m)
Downside:

e |nitial-value-problem — Neural CDE
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Results
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Results

99 We were able to reach very good results in predicting/forecasting proton intensity!

How did we evaluate our models?

o Initially we calculated 5 different metrics for evaluating our models

— MSE, MAE, Pearson Correlation, Spearman Correlation, R2 Score / Prediction
Efficiency

e Finally, we just use the Spearman Correlation
Explanation Spearman-Correlation

o Statistical measurement of the strength of a monotonic relationship
e The closer SC is to £1 the stronger the monotonic relation

covariance(rank(X), rank(Y))
std(rank(X)) - (rank(Y))

SC = with, SC € [-1,1]
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Results

¥ Overall best result 0.63 on channel 1 from ExtraTree!

T T v— sc Simple Regression and all leading
models are tree-based!
1 ExtraTree 0.63
5 GradientBoostingReg 05639 e General knowr'w. Tree-Based
Models are quite good!
3 AdaBoostReg 0.5923 .
AdaBoosiR . e Self-learning — less
4 asoosiieg elesy dependent on paramter than
5 HistGradientBoostingReg  0.4579 eg. SVM
6 GradientBoostingReg 0.2939
7 GradientBoostingReg 0.2926
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ExtraTree_AE_index Channel 1: Prediction vs. Observation (Count)
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Results

Feature importances for second best task 1 model (AdaBoost) on channel 1.
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Results

¥ Best task 2 result 0.6537 on channel 1 from GRU!

Channel

1

N O o A WoN

Model

GRU
GRU
GRU
GRU
GRU
NCDE
NCDE

SC
0.6537
0.5687

0.604
0.5607
0.3988
0.2022
0.1918
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We beat the task 1 models on nearly every

channel!
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GRU Channel 1: Prediction vs. Observation (Count)
GRU Histogramm of model residuals (Channel: 1)
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Results

¥ Overall best result 0.6537 on channel 1 from GRU!

Channel | SC (Task 1)

0.5639
0.5923
0.5637

0.4579
0.2939
0.2020

N O o A WoN

\¥hat can we derive from those results:

SC (Task 2)
e Task 2 models achieved slightly better
performance

0.5687 e Task 2 differences that could relate to
0.604 the output:

— .. more complex models to
05607 capture highly dynamic relations
03988 — .. sequential input

— ... ability to capture trends
0.2022

e Channel 6/7 in general quite hard to
0.1018 prediction

Group: Deep Horizon

— .. a lot of missing datal!
— ... unpredictable particle behavior
in hight channels (high dynamic)
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Results

2-sided hypothesis test on spearman correlation:

e Null hypothesis: Predictions are uncorrelated to Observations
e Result: p = 0 for all channels — Null hypothesis is rejected
e Interpretation: Our model learned the trend of proton intensities!

Paired t-test on residuals:

e Null hypothesis: Mean of residuals = 0
e Result: p = 0 for all channels — Null hypothesis is rejected
e Interpretation: Predictions has systematic error
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Results

About XMM:
e The XMM-Newton X-Ray telescope is the biggest scientific satellite ever built in
Europe
e |t has very sensitive cameras that can see much more than any previous X-ray satellite

Use Case

e e have data about the contamination level of the XMM telescope
e |dea:

— Take the z,y, z coordinates from the XMM + OMNI data
— Use best model for predicting the 7 energy levels
— Goal: See which channel correlates best with the "contamination level

Result: e were not able to see a correlation between our predictions and the XMM
contamination level.
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Results

99 We achieved very promising results and we were able to make a good contribution
to predicting proton intensites by implementing ..

e .. a'simple” regression approach and
e .. a sequential model

Future Work:

e, 0 Fusion of temporal (OMNI) and
(I non-temporal (spatial) features:

encode(OMNI;—a.+|POS:)

Modeling systematic error (we are in a
highly dynamic set up)
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Results

Finally, what can we do with the work we did? Here we have two example use cases.

Hydroelectric Powerplants Space Measurments
e Geomagnetic storms can damage e High proton intensity are hazardous for
hydroelectrostations satellites (e.g. harm components)

e High proton intensity affect and disturb
the measurments
¥ Forecasting a high proton intensity ¥ Forecasting a high proton intensity at a
could help react on geomagentic storms  specific position could help to react on the
beforehand (e.g. shut down systems)! situation, e.b. change trajectory of satellite.

In general: The models and their predictions could help to understand contamination
and influencing factors in the outer space.
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Src.: https./. L.gov/pl

mission
Space Cs

. 95
Thank you!
Questions?
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