Deep Horizon

Modeling of Earth's Radiation Environment. Final Presentation

Team: Supervisor: Supervising Professor: Florian Peste, Jens Huthmacher, Marcus Münzer, Tanveer Hannan, Ziyang Zhou Max Berrendorf, Evgeniy Faerman, Dr. Elena Kronberg Prof. Dr. Matthias Schubert

Group: Deep Horizon

22.07.2020

Big Data Science Lab 20

Introduction

Introduction Background

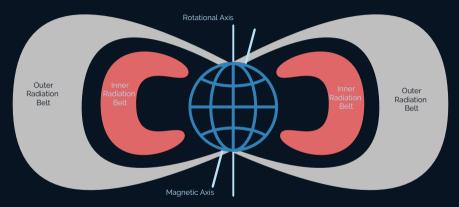
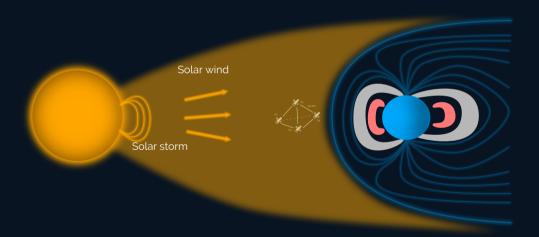


Figure: https://en.wikipedia.org/wiki/Van_Allen_radiation_belt



Energetic particles

- ... are hazard for modern spacecrafts (e.g., satellites)
- ... contaminate data in space observation (e.g. XMM)

Such contamination

- ... could cause severe data loss
- ... is highly dynamic
- ... is not yet well understood by the physicists

Introduction Data

Cluster

- Proton Intensities on 7 Energy Channels (p1 – p7)
- **Positions** (Coordinates, Distance from Earth)

OMNI

- Geomagnetic Activity (AE Index, SYM-H Index)
- Solar Activity (Solar Radio Flux)
- **Solar Wind Activity** (Speed, Density, Temperature, Dynamic Pressure)

Foot Type: Connection to the Magnetic Field Line to the Earth

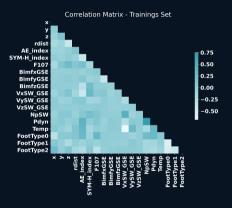
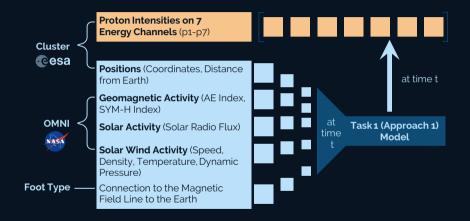
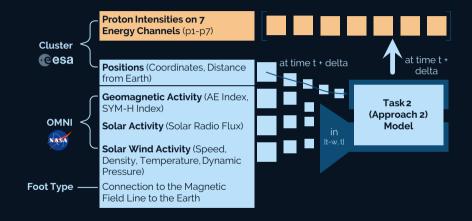


Figure: Correlation Matrix (Trainings Set)

Our Approaches Approach 1



Our Approaches Approach 2

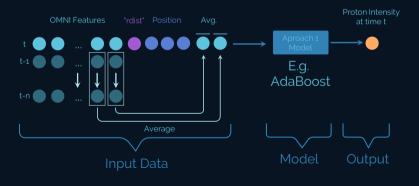


Approach 1

Approach 1 Architecture

Basic architecture for each channel 1-7:

- $Input + OMNI_t \rightarrow$ Prediction of proton intensities at timestamp t
- Additional features: Average of the last 1, 2, 4, 8, 16 ... hours of data
- **Output**: Proton intensities at timestamp t for channel p



Tree-Based

- Averaging:
 - \rightarrow Averages independent estimators
 - \rightarrow Low variance
 - ightarrow ExtraTrees, RandomForest
- Boosting:
 - \rightarrow Sequentially combined weak estimators
 - ightarrow Robust, works well with non-linear decision boundaries
 - \rightarrow AdaBoost, HistGradientBoosting, GradientBoosting, LightGBM
- Decision Trees (Regression Trees):
 - \rightarrow Simple decision rules
 - \rightarrow Low costs

Non Tree-Based

- Linear:
 - \rightarrow Linear combination of features
 - \rightarrow LarsRegression, RidgeRegression
- kNeighborsRegression

Baseline:

- Mean: Predicts the mean of a channel
- Historical Binning: Predicts mean over an according spatial bin

Approach 2 (DeepHorizon)

Approach 2 (DeepHorizon) Architecture

Proton intensities:

- For a point p in 3D space (i.e. (x, y, z))
- At time $t + \Delta$

Parameters:

- Sequence: 3 hours
- Forecast: 5 minutes

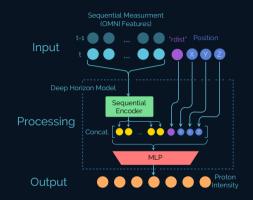


Figure: Deep Horizon Architecture (Approach 2)

Model Class	Model(s)	Inductive Bias
RNN	LSTM / GRU	Sequentiality
CNN	(Causal) CNN (TCN)	Locality
Differential Equation	Neural ODE / Neural CDE	Continuity

Approach 2 (DeepHorizon) NeuralODE/CDE

Idea:

• Learn the rate of change

Recipe:

- Learn derivative $f_{\theta} = \frac{\partial F_{\theta}}{\partial x}$
- Integrate over derivative $F_{\theta} = \int f_{\theta}$
- Solve differential equation by adding initial condition $z_0 + \int f_{\theta}$

Example:

$$y = x^2 + 5$$
$$y' = 2x$$

Perfect case:

$$y_{learned} = 5 + \int 2x \, dx$$

 $y_{learned}(5) = 5 + 25 = 30 = y(5)$

Final Model:

 $y pprox \ell_{ heta}^1(z_T)$, where $z_t = z_0 + \int_0^t f_{ heta}(z_s) ds$ and $z_0 = \ell_{ heta}^2(x)$

Downside:

• Initial-value-problem \rightarrow **Neural CDE**

Results

55 We were able to reach very good results in predicting/forecasting proton intensity!

How did we evaluate our models?

- Initially we calculated 5 different metrics for evaluating our models
 - → MSE, MAE, Pearson Correlation, Spearman Correlation, R2 Score / Prediction Efficiency
- Finally, we just use the Spearman Correlation

Explanation Spearman-Correlation

- Statistical measurement of the strength of a monotonic relationship
- The closer SC is to ± 1 the stronger the monotonic relation

 $SC = rac{covariance(rank(X), rank(Y))}{std(rank(X)) \cdot (rank(Y))}$

with, $SC \in [-1, 1]$

Results Approach :

Overall best result 0.63 on channel 1 from ExtraTree!

Channel	Model	SC
1	ExtraTree	0.63
2	GradientBoostingReg	0.5639
3	AdaBoostReg	0.5923
4	AdaBoostReg	0.5637
5	HistGradientBoostingReg	0.4579
6	GradientBoostingReg	0.2939
7	GradientBoostingReg	0.2926

Simple Regression and all leading models are **tree-based**!

- General known: Tree-Based Models are quite good!
- Self-learning \rightarrow less dependent on paramter than e.g. SVM

Results Approach 1 - Plots (Best Model)

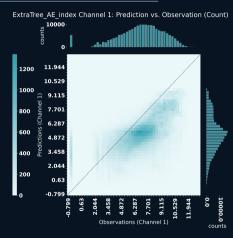


Figure: ExtraTree (Channel 1): Prediction vs. Observation

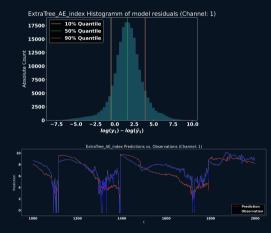


Figure: ExtraTree (Channel 1): Residuals and Predictions vs. Observation over time

Group: Deep Horizon

Results Approach 1 - Feature Importances

Feature importances for second best task 1 model (AdaBoost) on channel 1.

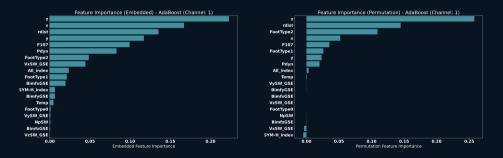


Figure: Embedded Feature Importance

Figure: Permutation Feature Importance

Results Approach 2

_	
•	

Best task 2 result 0.6537 on channel 1 from GRU!

Channel	Model	SC
1	GRU	0.6537
2	GRU	0.5687
3	GRU	0.604
4	GRU	0.5607
5	GRU	0.3988
6	NCDE	0.2022
7	NCDE	0.1918

We beat the task 1 models on nearly every channel!

Results Approach 2 - Plots (Best Model)

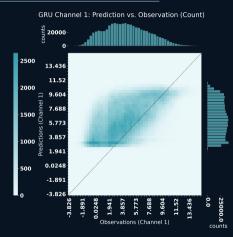


Figure: GRU (Channel 1): Prediction vs. Observation (Observations > 1)

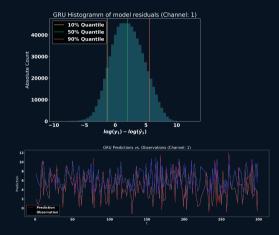


Figure: GRU (Channel 1): Residuals and Predictions vs. Observation over time

Group: Deep Horizon

Results Approach 1 vs. Approach 2

Overall best result 0.6537 on channel 1 from GRU!

Channel	SC (Task 1)	SC (Task 2)
1	0.63	0.6537
2	0.5639	0.5687
3	0.5923	0.604
4	0.5637	0.5607
5	0.4579	0.3988
6	0.2939	0.2022
7	0.2020	0.1918

What can we derive from those results:

- Task 2 models achieved slightly better performance
- Task 2 differences that could relate to the output:
 - \rightarrow ... more complex models to capture highly dynamic relations
 - \rightarrow ... sequential input
 - $\rightarrow\,$... ability to capture trends
- Channel 6/7 in general quite hard to prediction
 - \rightarrow ... a lot of missing data!
 - → ... unpredictable particle behavior in hight channels (high dynamic)

Results Some remarks on statistical interpretability

2-sided hypothesis test on spearman correlation:

- Null hypothesis: Predictions are uncorrelated to Observations
- Result: p = 0 for all channels \rightarrow Null hypothesis is rejected
- Interpretation: Our model learned the trend of proton intensities!

Paired t-test on residuals:

- Null hypothesis: Mean of residuals = 0
- Result: p = 0 for all channels \rightarrow Null hypothesis is rejected
- Interpretation: Predictions has systematic error

About XMM:

- The XMM-Newton X-Ray telescope is the biggest scientific satellite ever built in Europe
- It has very sensitive cameras that can see much more than any previous X-ray satellite

Use Case

- We have data about the contamination level of the XMM telescope
- Idea:
 - \rightarrow Take the x, y, z coordinates from the XMM + OMNI data
 - \rightarrow Use best model for predicting the 7 energy levels
 - $\rightarrow\,$ Goal: See which channel correlates best with the "contamination level"

Result: We were not able to see a correlation between our predictions and the XMM contamination level.

Results Conclusion and Future Work

We achieved very promising results and we were able to make a good contribution to predicting proton intensites by implementing ...

- ... a "simple" regression approach and
- ... a sequential model

Future Work:

Fusion of temporal (OMNI) and non-temporal (spatial) features: $encode(OMNI_{t-\Delta:t}|POS_t)$

Modeling systematic error (we are in a highly dynamic set up)

Results Practical Usage

Finally, what can we do with the work we did? Here we have two example use cases.

Hydroelectric Powerplants

Geomagnetic storms can damage
hydroelectrostations

Forecasting a high proton intensity could help react on geomagentic storms beforehand (e.g. shut down systems)!

Space Measurments

- High proton intensity are hazardous for satellites (e.g. harm components)
- High proton intensity affect and disturb the measurments
- Forecasting a high proton intensity at a specific position could help to react on the situation, e.b. change trajectory of satellite.

In general: The models and their predictions could help to understand contamination and influencing factors in the outer space.

Src.: https://www.nasa.gov/press-release/nasa-astronauts-launch-from-america-in-historic-test-flight-of-spacex-crew-dragon

A SpaceX Falcon g rocket carrying the company's Crew Dragon spacecraft is launched from Launch Complex 39A on NASA's SpaceX Demo-2 mission to the ISS with NASA Saturday. May 30, 2020, at NASA's Kennedy Space Center in Florida

Thank you! Questions?

Group: Deep Horizon