Contact-Averse Reinforcement Learning

KDDone

David Dodel, Jan Alexander Jensen, Matthias Kraus, Xingjian Chen

2020-07-22

Supervisor: Sabrina Friedl
Agenda

1. Project objective
2. Theoretical Background
3. Software Stack
4. Development Process
5. Simulation Environment
6. Agents
7. Evaluation
8. Lessons Learned
Problem Statement

- Context: COVID-19 outbreak
- Contact-Averse Reinforcement Learning
 - Social Distancing
 - Reinforcement Learning
- Can we train self-learning agents to avoid contact while still achieving their goals?
- Bonus: Can we reproduce behaviors seen in real-life human agents within simulated multi-agent "games"?
Reinforcement Learning

- (Machine) Learning
 - Self-learning algorithms
- Reinforcement
 - Learning through feedback from actions
- Observation: What's around me?
 - (agent) state
- Policy: What am I doing next?
- Reward: Was it good/bad?
Multi-agent RL (MARL)

- Interesting to model games and interactions
 Not trivial to scale from single agent
- \(n \times \text{agents} - 1 \times \text{env} \)
- Approaches
 - Share state
 - Share policy
 - Communicate
 - Compose policies
 - ...
Software Stack

- **OpenStack**: VMs and infrastructure
- **Tox**: Test automation
- **RLlib**: Training/Tuning and algorithms
- **MLflow**: Logs and Evaluation
Software Development

- Test Driven Development
- GitLab Flow => slight adjustments

- LoC: 4240
- Issues: 74
Software Development

- Protocols and Wiki for tracking
- Weekly Zoom standups
- Iterate on process
Sprint recap

- **Sprint 0**
 - Infrastructure Setup
 - Tooling

- **Sprint 1**
 - Infrastructure Setup
 - Paper Research
 - Implementation Concept

- **Sprint 2**
 - Environment
 - ML Flow Logging
 - Random Sampling Agent

- **Sprint 3**
 - Environment Visualization
 - Shortest Path Agent

- **Sprint 4**
 - Configurable Observations
 - DQN Agent

- **Sprint 5**
 - Scenario Implementation
 - Evaluation

- **Sprint 6**
 - Finalization
 - KDDone ;)

Environment

- Based on gym-minidgrid
- Supports interaction of multiple agents
- Action Space
 - North/East/South/West
 - Wait
- Rewards
 - step/wait: -0.01
 - stepping into the same cell: -0.5
 - reaching the goal: 1.0
- Configurable Observation Space
Random Multi Room
Shortest Path Agent

• Baseline Agent
 ▪ Get to goal without taking contact aversion into consideration

• Calculates shortest path based on Dijkstra
 ▪ Randomized when multiple shortest paths with the same length
DQN

• Q-Learning
 - basic algorithm based on maximise Q value
 - Unstable when using nonlinear function
 - approximator

• Deep Q Network
 Using Deep Neural Network to map state to
 - action
 - Features:
 ◦ Experience Replay \(<state, action, reward, next_state>\)
 ◦ Target Network

\[Q(s, a) = r + \gamma \max_{a'} Q(s', a') \]
IQL

- Independent Q Learning
- Solution for solving Multi-agent Problem
- Ray support multi-agent
 - Example: shortestPathAgent+DQN
Evaluation Environments

\[a_1: \text{agent 1, } a_2: \text{agent 2} \]

\[t_1: \text{target 1, } t_2: \text{target 2} \]
env #1
result #1 - dijkstra

reward: -0.05 - 0.5 +1 = 0.45
result #1 - dijkstra + DQN

reward:
-0.05 + 1 = 0.96
-0.07 + 1 = 0.93
env #2
result #2 - dijkstra

\[-0.04 - 0.5 + 1 = 0.56\]
result #2 - dijkstra + DQN

\[-0.04 + 1 = 0.96\]
\[-0.08 + 1 = 0.92\]
result #2 - DQN

\[-0.04 + 1 = 0.96\]
\[-0.07 + 1 = 0.93\]
Challenges

TEAM:

- Remote team work
- Uncertain Uni schedule
- Issues: slow downs when waiting for reviews

TECH:

- Ray (Doc vs. source code)
- Different OSs
- Complexity of project/system
- Training multiple agents
Lessons Learned

- Avoid tests with long runtime or large memory footprint
- Pair sessions foster team work
- Iteratively adjust dev processes
- Explore/evaluate system-wide options as opposed to rigid assignment

Special Thanks: Sabrina Friedl
Possible extensions

- QMix
- experiment with larger env
- more agents
- pick up item before goal (shopping)
- maze env
Questions?
Independent 2x DQN

- Standing still
 - Min reward: -1.92
- Independent policies don't find a compromise
- Contrast to shared policy DQN w/ 2 agents
env #3
result #3 - dijkstra
result #3 - dijkstra + DQN
env #4
result #4 - dijkstra
result #4 - dijkstra + DQN