

# Argument Mining in Scientific Reviews

# Team five

Project Supervisor: Michael Fromm Lukas Dennert, Ruoxia Qi, Siddharth Bhargava, Sophia Selle, Yang Mao, Yao Zhang

## Motivation

- 63.4 million hours of peer-reviews in 2015<sup>[1]</sup>
- Example:

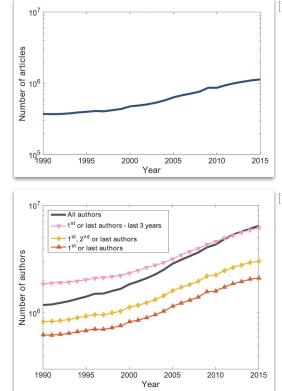
LMU had 51.606 students in 2018<sup>[2]</sup>

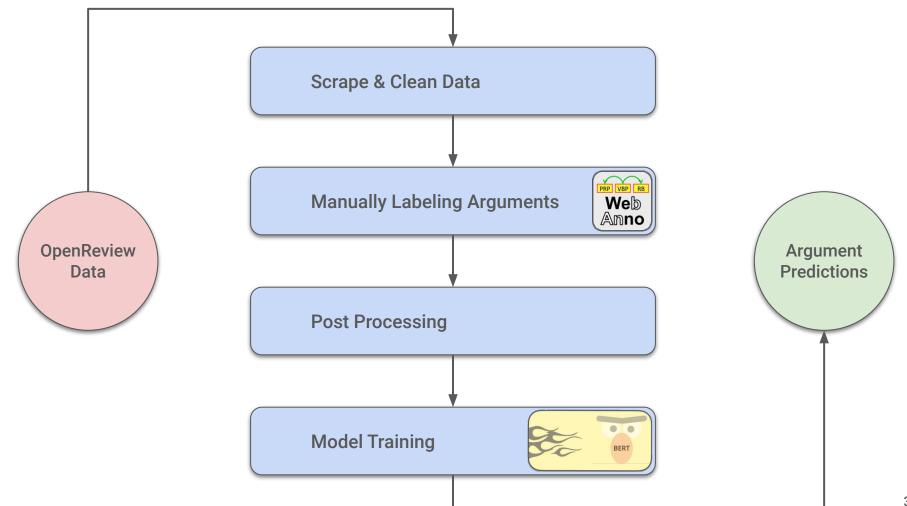
~12281/2 hours of reviewing

Or review ~273 papers per year

- +3.5% articles every year <sup>[1]</sup>
- Sustainable?
- Solution: partial Automation ⇒ Argument Mining
  - Argument Recognition (argumentative vs. non-arg.)
  - Stance Detection (pos-arg vs. neg-arg.)







## 1. Scrape Data

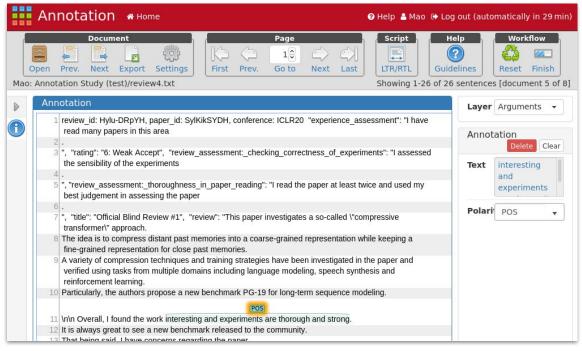
- OpenReview ⇒ better transparency of review process
- Downloaded with OpenReview API
- 6 Conferences, 12144 reviews total

## 2. Clean Data

- Remove non-words for BERT
- Universal mapping of ratings



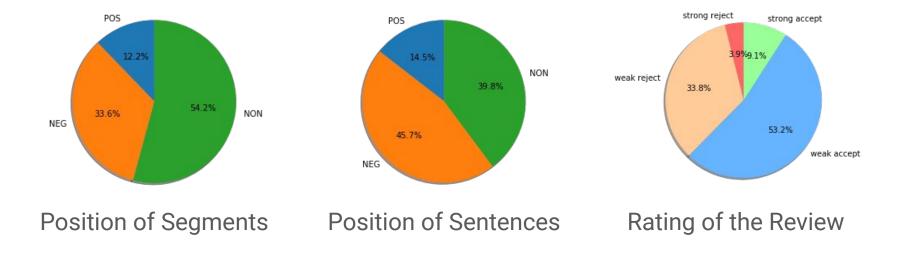
## 3. Annotation Study



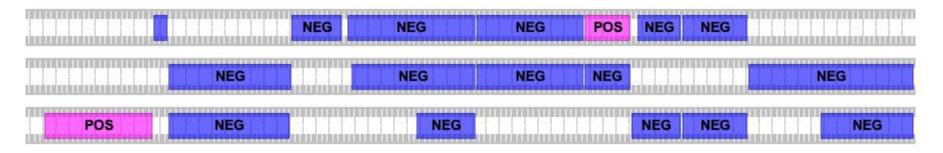
- Annotation
   Software: Webanno
- Labels: 'POS' and 'NEG'

Screenshot of Webanno on annotation page

## 3. Summary of our 77 Annotated Reviews



## 3. Inter Annotator Agreement



- Generally high agreement on POS/NEG, low agreement on Arg/Non-Arg
- No big difference when removing 1 annotator
- Krippendorf's Alpha: measure for the reliability of unitizing textual continua, i.e. annotate units without fixed boundaries.

## 4. Post-Processing: our new dataset "AMSR"

|       |   | A | В       | C      | D   | E           | F         | G            | Н          |
|-------|---|---|---------|--------|-----|-------------|-----------|--------------|------------|
| Input | 1 |   | unit_id | rater  | tag | token_start | token_end | offset_start | offset_end |
|       | 2 | 0 | 1       | Mao    | POS | 2-10        | 2-23      | 182          | 266        |
|       | 3 | 1 | 2       | Mao    | POS | 3-1         | 3-68      | 267          | 592        |
|       | 4 | 2 | 3       | Ruoxia | POS | 2-10        | 2-22      | 182          | 265        |
|       | 5 | 3 | 4       | Ruoxia | POS | 3-4         | 3-68      | 282          | 592        |

#### Output

|    | А               | В                                                      |                                            |    |
|----|-----------------|--------------------------------------------------------|--------------------------------------------|----|
| 1  | graph20_25_2_0  | The submission presents evaluation of BendyPass,       | ('(0,128);', 'NA;')                        | 1  |
| 2  | graph20_25_2_1  | The prototype is a simplified version of Bend Passw    | ('(0,108);', 'NA;')                        | 2  |
| 3  | graph20_25_2_2  | The evaluation consisted of two sessions (taking pla   | ('(0,153);', 'NA;')                        | 3  |
| 4  | graph20_25_2_3  | The experiment compared BendyPass with standar         | ('(0,92);', 'NA;')                         | 4  |
| 5  | graph20_25_2_4  | The results show that although it took longer for par  | ('(0,182);', 'NA;')                        | 5  |
| 6  | graph20_25_2_5  | This submission contributes new knowledge about        | ('(0,103);', 'POS;')                       | 6  |
| 7  | graph20_25_2_6  | The main strength of the paper is the experimental     | ('(0,105);', 'POS;')                       | 7  |
| 8  | graph20_25_2_7  | It is particularly important to evaluate technology wi | ('(0,76);', 'POS;')                        | 8  |
| 9  | graph20_25_2_8  | The paper is well written: the work is motivated well  | ('(0,25);(25,2);(27,196);', 'POS;NA;POS;') | 9  |
| 10 | graph20_25_2_9  | However, there are two main weaknesses: 1) the su      | ('(0,9);(9,151);', 'NA;NEG;')              | 10 |
| 11 | graph20 25 2 10 | The paper never justifies why Bend Passwords [33]      | ('(0,113);', 'NEG;')                       | 10 |

|    | А              | В                                                       | C   |
|----|----------------|---------------------------------------------------------|-----|
| 1  | graph20_25_2_0 | The submission presents evaluation of BendyPass,        | NA  |
| 2  | graph20_25_2_1 | The prototype is a simplified version of Bend Passw     | NA  |
| 3  | graph20_25_2_2 | The evaluation consisted of two sessions (taking pla    | NA  |
| 4  | graph20_25_2_3 | The experiment compared BendyPass with standard         | NA  |
| 5  | graph20_25_2_4 | The results show that although it took longer for part  | NA  |
| 6  | graph20_25_2_5 | This submission contributes new knowledge about h       | POS |
| 7  | graph20_25_2_6 | The main strength of the paper is the experimental u    | POS |
| 8  | graph20_25_2_7 | It is particularly important to evaluate technology wit | POS |
| 9  | graph20_25_2_8 | The paper is well written: the work is motivated well,  | POS |
| 10 | graph20_25_2_9 | However, there are two main weaknesses: 1) the su       | NEG |
|    | 1 00 05 0 10   |                                                         |     |

## 5. Experimental Setup (Datasets)

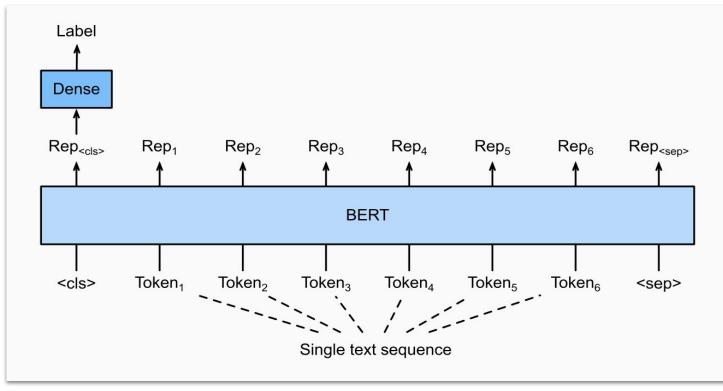
|      |               | Pos         | Neg         | NonArg       | SUM    |
|------|---------------|-------------|-------------|--------------|--------|
| AMSR | Token-level   | 3259 (11%)  | 10559 (37%) | 14689 (51%)  | 28507  |
|      | Segment-level | 257 (12%)   | 711(33%)    | 1145 (54%)   | 2113   |
| AURC | Token-level   | 36902 (20%) | 35116 (19%) | 109908 (60%) | 181926 |
|      | Segment-level | 2190 (16%)  | 2072 (15%)  | 9522 (69%)   | 13784  |

Token: This paper should be rejected, because the research question is not clearly articulated.

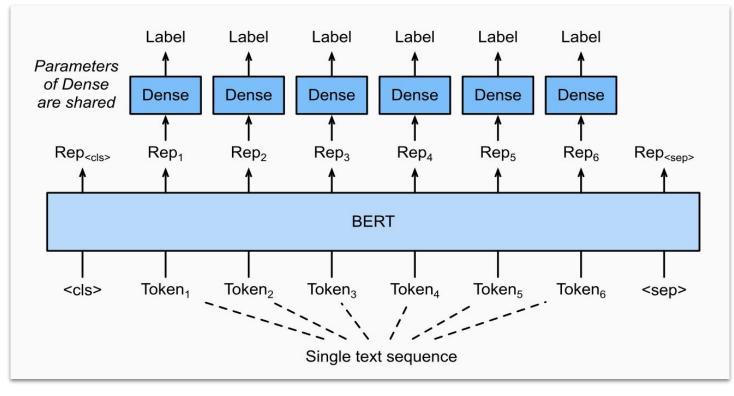
Segment: This paper should be rejected, because the research question is not clearly articulated.

Sentence: This paper should be rejected, because the research question is not clearly articulated.

## 5. Experimental Setup (Sentence-Level)



## 5. Experimental Setup (Token-Level)



## 5. Experimental Setup (Tasks)

|                              | Description (Classify token/sentence into) |
|------------------------------|--------------------------------------------|
| Recognition ' <b>Recog</b> ' | 2 classes: Arg vs. NonArg                  |
| Stance Detection 'Stance'    | 2 classes: Pos vs. Neg                     |
| Classification 'Classify'    | 3 classes: Pos vs. Neg vs. NonArg          |

"The platform was nicely designed."

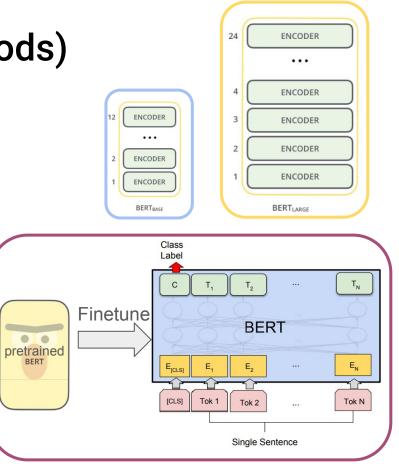
"The research question is not clearly articulated."



"Did they record data during the studies?"

## 5. Experimental Setup (Methods)

- 1. Majority Baseline
- 2. Bertbase -> finetune on AURC
- 3. Bertbase -> finetune on AURC -> finetune on AMSR
- 4. Bertbase -> finetune on AMSR
- 5. Bertlarge -> finetune on AMSR
- 6. Human performance



## 6. Results

Recognition Model without Topic Information:

Ground Truth:

While the submission is hard to read in some places and some details about the system and study are missing, I think it is above the bar and should be accepted.

**Sentence Level Prediction:** 

While the submission is hard to read in some places and some details about the system and study are missing, I think it is above the bar and should be accepted.

**Token Level Prediction:** 

While <mark>the</mark> submission is hard to read in some places and <mark>some details about the</mark> system and study <mark>are</mark> missing, I think it is above the bar and should be accepted.

## 6.1 Based on Training Method

|                                                      | Recog                     | nition                   | Stance I                    | Detection                | Classification              |                          |  |
|------------------------------------------------------|---------------------------|--------------------------|-----------------------------|--------------------------|-----------------------------|--------------------------|--|
|                                                      | sentence-setup1           | token-setup <sup>2</sup> | sentence-setup <sup>1</sup> | token-setup <sup>2</sup> | sentence-setup <sup>1</sup> | token-setup <sup>2</sup> |  |
| 1. Majority Baseline                                 | 0.351                     | 0.35                     | 0.423                       | 0.434                    | 0.234                       | 0.233                    |  |
| 2. Bert_BASE -> finetune on AURC                     | 0.316 (T: 0.308)          | 0.353 (T: 0.355)         | 0.719 (T: 0.735)            | 0.644 (T: 0.627)         | 0.203                       | 0.241 (T: 0.246)         |  |
| 3. Bert_BASE -> finetune on AURC -> finetune on AMSR | 0.720 (T: 0.707)          | 0.877 (T: 0.878)         | 0.858 (T: 0.846)            | 0.862 (T: 0.868)         | 0.700 (T: 0.660)            | 0.796 (T: 0.807)         |  |
| 4. Bert_BASE -> finetune on AMSR                     | 0.730 ( <b>T: 0.713</b> ) | 0.886 (T: 0.896)         | 0.890 (T: 0.868)            | 0.853 (T: 0.849)         | 0.698 (T: 0.517)            | 0.814 (T: 0.808)         |  |
| 5. Bert_LARGE -> finetune on AMSR                    | <b>0.755</b> (T: 0.702)   | 0.890 (T: 0.900)         | 0.905 (T: 0.867)            | 0.942 (T: 0.930)         | 0.678 (T: 0.554)            | 0.831 (T: 0.839)         |  |
| 6. Human Performance                                 | 0.885                     | 0.873                    | 0.978                       | 0.98                     | 0.881                       | 0.86                     |  |

Table: Evaluation Table showing the F1 Macro values for different training methods used for fine-tuning our models, averaged over 10 seeds.

<sup>1</sup>: F1 Macro calculated based on unweighted loss function

<sup>2</sup>: F1 Macro calculated based on weighted loss function

"T": F1 Macro calculated based on model with with topic information incorporated

## 6.2 Based on Topic Information

Incorporating Topic Information:

[CLS] {sentence tokens} [SEP] {topic info}

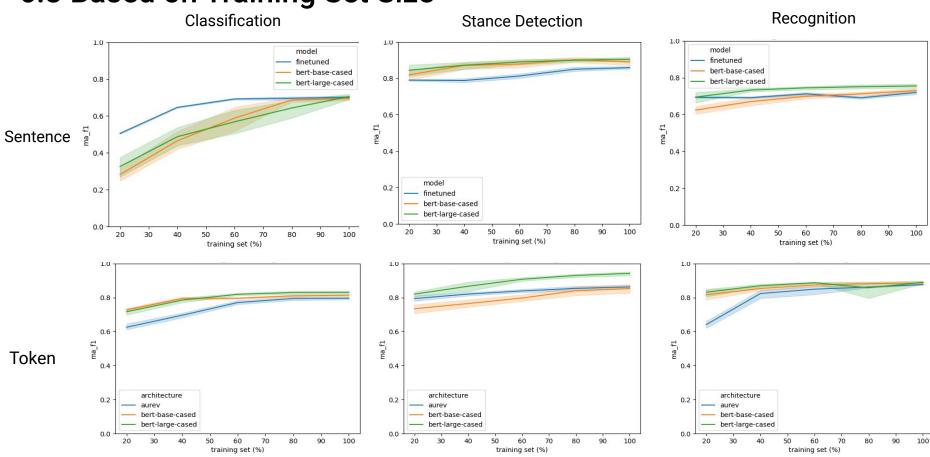
Topic for AMSR chosen: "paper quality"

#### Inference:

- Token Level Setup
   ⇒ no effect with topic information
- Sentence Level Setup
   ⇒ slight reduction of performance

|                                                   | Sentence-setup            | Token-setup               |
|---------------------------------------------------|---------------------------|---------------------------|
| Bert_BASE -> finetune on AURC                     | 0.203                     | 0.241 ( <b>T: 0.246</b> ) |
| Bert_BASE -> finetune on AURC -> finetune on AMSR | 0.700 ( <b>T: 0.660</b> ) | 0.796 ( <b>T: 0.807</b> ) |
| Bert_BASE -> finetune on AMSR                     | 0.698 ( <b>T: 0.517</b> ) | 0.814 ( <b>T: 0.808</b> ) |
| Bert_LARGE -> finetune on AMSR                    | 0.678 ( <b>T: 0.554</b> ) | 0.831 ( <b>T: 0.839)</b>  |

*Table*: F1 Macro values for Classification task without topic information and with topic information (in brackets).



Figures: Sentence/Token Level Setup without Topic 1) Classification 2) Stance Detection 3) Recognition

### 6.3 Based on Training Set Size

## 6.4 Multi-Task Experiment

#### Multi-Task Model

- Classification Task
- Without Topic Information
- Sentence Level

Results:

- F1 Macro for Bert<sub>Base</sub> on AURC and AMSR = 0.7
- F1 Macro for Bert<sub>Base</sub> on MTL and AMSR = 0.5

| Datasets | Source                                                                                  | Торіс      |
|----------|-----------------------------------------------------------------------------------------|------------|
| AURC     | Fine-Grained Argument Unit Recognition and<br>Classification                            | 8 topics   |
| CTAM     | Cross-topic Argument Mining from<br>Heterogeneous Sources                               | 8 topics   |
| CWAM     | Corpus Wide Argument Mining - a Working<br>Solution                                     | 213 topics |
| PASPE    | Parsing Argumentation Structures in<br>Persuasive Essays                                | 79 topics  |
| Debates  | DebatesYes, we can! Mining Arguments in 50 Years<br>of US Presidential Campaign Debates |            |
| AMSR     | AMSR OpenReview.net                                                                     |            |

## 7. Application

Goal: Model correlation between arguments and review scores

#### **Step 1: Confidence Prediction**

- Apply best-performance recog model on all unlabeled reviews
- Got confidence score + sentence representation ([CLS])
- Sentence Level:

|  | [CLS] | The results are not stellar, but certainly a worthy investigation. | 0.999 |  |
|--|-------|--------------------------------------------------------------------|-------|--|
|--|-------|--------------------------------------------------------------------|-------|--|

#### • Token Level:

| [CLS] | The  | results | are  | not  | stellar | ,    | but  | Certainly | а    | worthy | Investigation |      |
|-------|------|---------|------|------|---------|------|------|-----------|------|--------|---------------|------|
|       | 0.81 | 0.95    | 0.90 | 0.69 | 0.96    | 0.03 | 0.19 | 0.78      | 0.94 | 0.94   | 0.78          | 0.04 |

## 7. Application (Future Work)

|       | evel Score<br>d: graph_20_1 |      |           |       |
|-------|-----------------------------|------|-----------|-------|
| sen   | avg_score                   | arg% |           |       |
| sen_3 | 0.68                        | 0.75 | (3 args   | I=0.4 |
| sen_2 | 0.65                        | 0.67 | expected) |       |
| sen_9 | 0.45                        | 0.52 | reviews%  | 71.6% |
| sen_1 | 0.31                        | 0.39 |           | k=4   |
|       |                             |      | avg(arg%) | 0.603 |
| sen_n | 0.01                        | 0.02 |           |       |

#### **Step 2: Argument Extraction**

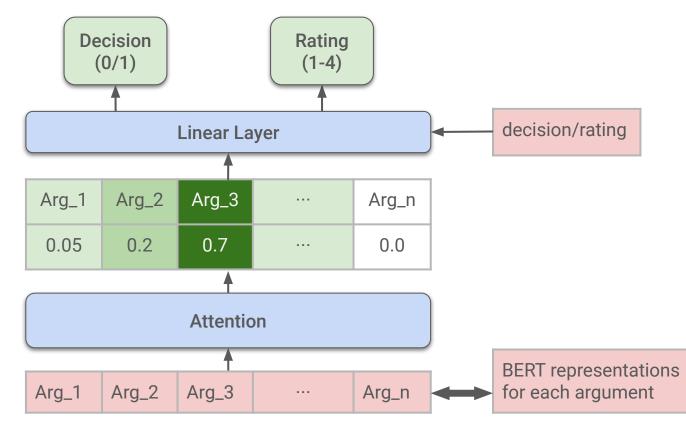
• Sentence Level: confidence

#### • Token Level:

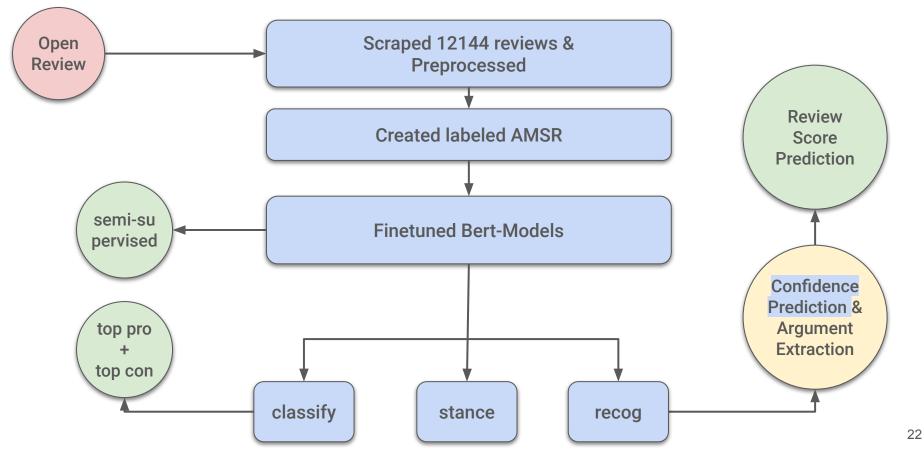
Avg\_score = avg(confidence of token) Arg\_percentage =  $\frac{|arguments|}{|tokens|_{confidence(arg)>0.}}$ 

- Method 1: threshold (I), e.g. I=0.4
- Method 2: topK, e.g. k=4
- Select I and k based on statistical analysis (ongoing)

## 7. Model Training and Evaluation



## 8. Conclusion



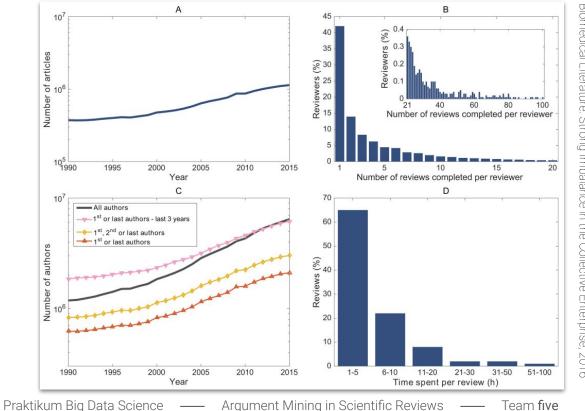


# Thank you, for your attention.

## Team five

Project Supervisor: Michael Fromm Lukas Dennert, Ruoxia Qi, Siddharth Bhargava, Sophia Selle, Yang Mao, Yao Zhang

## **Backup Slides: Statistics about Reviews**



Biomedical M. Kovanis et al., et al., The Global Burden of J Literature: Strong Imbalance Journal Peer Review in the in the Collective Enterpris Collective Enterprise, 2016

## Backup Slides: Mapping of Ratings

#### 1.3. Ratings Definition

The following observations have been made regarding the ratings format for each of the chosen conference,

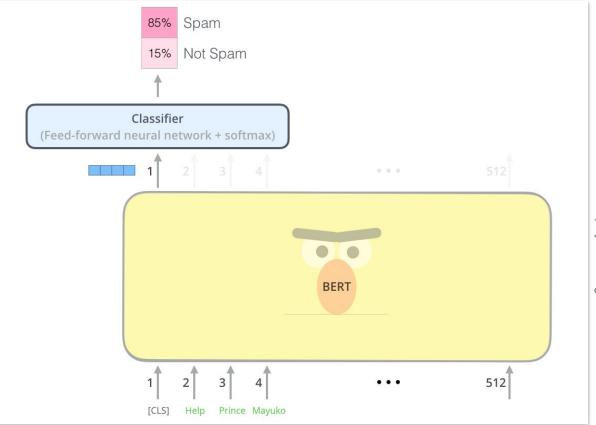
The ratings scheme can be seen using the command: conference\_name["rating"].unique()

- ICLR19 follows a ratings distribution ranging from 1 10 with "1" meaning "trivial or Wrong" and "10" meaning "Top 5% of accepted papers, seminal paper".
- ICLR20 follows a ratings distribution ranging from {1,3,6,8} with "1" meaning "Reject" and "8" meaning "Accept".
- MIDL19 and MIDL20 follow a ratings distribution ranging from 1 4 with "1" meaning "Strong Reject" and "4" meaning "Strong Accept".
- NeuroAI19 follows a ratings distribution ranging from 1 5 with "1" meaning "Very Poor" and "5" meaning "Excellent".
- Graphics20 follows a ratings distribution ranging from 2 9 with "2" meaning "Strong rejection" and "9" meaning "Top 15% of accepted papers, strong accept".

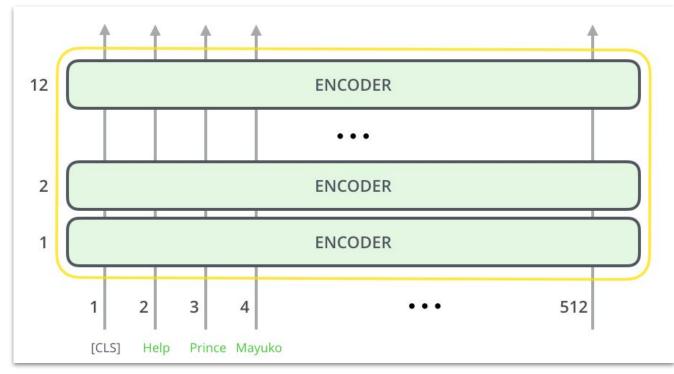
To ensure uniformity in the data, we propose to convert the above ratings distribution into a uniform distribution ranging from 1 - 4, with "1" meaning "Strong Rejection" and "4" meaning "Strong Acceptance", as described in the table below.

| Rating | Proposed Meaning | Raw Meaning                                                                                                                                             |
|--------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Strong Reject    | Trivial or wrong / Strong Rejection / Clear Rejection / Very Poor                                                                                       |
| 2      | Weak Reject      | Ok but not good enough - rejection / Marginally below acceptance threshold / Poor                                                                       |
| 3      | Weak Accept      | Marginally above acceptance threshold / Good paper, accept                                                                                              |
| 4      | Strong Accept    | Top 50% of accepted papers, clear accept / Top 15% of accepted papers, strong accept / Top 5% of accepted papers, seminal paper / Very good / Excellent |
|        |                  | Table 2: Proposed Ratings System                                                                                                                        |

## **Backup Slides: BERT + Classification Layer**



## Backup Slides: BERT Structure (Encoders)



Source: http://jalammar.github.io/illustrated-bert/

## Backup Slides: Krippendorff Alphas

With reference to the coincidences defined by (1) and (4) and following (2), the *agreement coefficient*  $_u\alpha$  can take advantage of its limitation to the nominal metric and becomes defined by:

$$\alpha_{\text{nominal}} = 1 - \frac{\omega D_o}{\omega D_e} = 1 - \frac{\frac{1}{\ell_{..}} \sum_{c=\phi}^{\nu} \sum_{k=\phi}^{\nu} \ell_{ck \text{ nominal}} \delta_{ck}^2}{\frac{1}{\ell_{..}} \sum_{c=\phi}^{\nu} \sum_{k=\phi}^{\nu} \varepsilon_{ck \text{ nominal}} \delta_{ck}^2} = 1 - \frac{\ell_{..} - \sum_{c=\phi}^{\nu} \ell_{cc}}{\ell_{..} - \sum_{c=\phi}^{\nu} \varepsilon_{cc}}$$
(5a)

Replacing the reference to the expected coincidences  $\varepsilon_{ck}$  in the last expression of (5a) with its definition (4) yields another form of  ${}_{u}\alpha_{nominal}$ :

$${}_{u}\alpha_{\text{nominal}} = 1 - \frac{{}_{u}D_{o}}{{}_{u}D_{c}} = 1 - \left(\ell \dots - \frac{1}{\ell \dots}\sum_{i}^{m}\sum_{g} \begin{cases} L(S_{ig \text{ valued}=\phi}) \\ (L(S_{ig \text{ valued}\neq\phi}))^{2} \end{cases} \right) \frac{\ell \dots - \sum_{c=\phi}^{v}\ell_{cc}}{\ell^{2} \dots - \sum_{c=\phi}^{v}\ell_{c}^{2}}.$$
(5b)

For our numerical example in Figure 1, which was constructed to highlight features that are easily overlooked when evaluating complex unitizations, the observed coincidences (1) and expected coincidences (4) are found in Figure 4:

Klaus Krippendorff et al., On the reliability of unitizing textual continua: Further developments, 2015 Source: https://link.springer.com/article/10.1007/s11135-015-0266-1

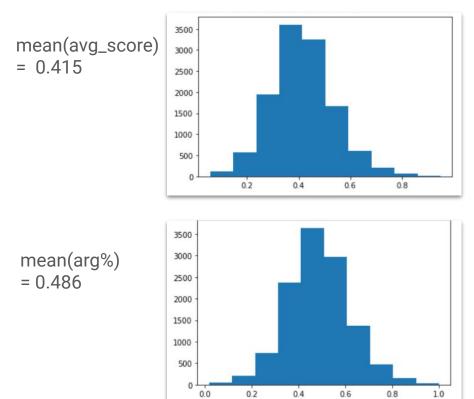
## Backup Slides: Krippendorf's Alpha

- General scores: uAlpha = 0.579 (NON/POS/NEG), biAlpha = 0.537 (NON-AU/AU), cuAlpha = 0.861 (POS/NEG)
- Verify quality of annotations per rater: uAlpha\_leave\_one in the range of 0.531-0.611
- Assign same weight to gaps: cuAlphaNON = 0.596
- Reduce the impact of skewed distribution:
  - uAlpha per tag: uAlphaPOS = 0.669, uAlphaNEG = 0.6
  - Merged Alpha: uAlpha = cuAlphaNON = 0.568, biAlpha = 0.521, cuAlpha = 0.903

## Backup Slides: Krippendorf's Alpha

- uAlpha applies to all segments, including annotated units and gaps between them. Since we regard non-annotated parts as non-argumentative (sub)sentences, which will also be used as input of our model, it is necessary to take them into consideration.
- biAlpha measures reliability of a binary distinction between annotated unites taken together and gaps.
- cuAlpha focuses only on annotated units (ignoring gaps). It indicates the level of confidence in annotating argumentative (sub)sentences.
- Since non-annotated parts might be as important as annotated ones, we remove gaps with offset length < 3 (e.g. single punctuation/stop words...), assign 'NON' to remaining gaps, and calculate cuAlpha among three labels (cuAlphaNON).

## **Backup Slides: EDA at Token Level**



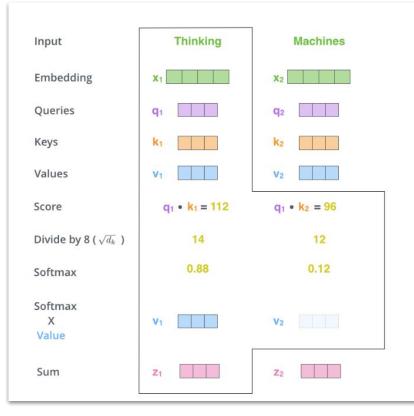
Different thresholds with 3 arguments per review

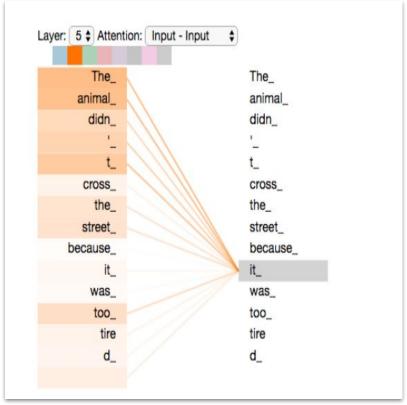
| arg%     | 0.4   | 0.5 | 0.6   | 0.7   |
|----------|-------|-----|-------|-------|
| reviews% | 71.6% | 63% | 50.6% | 34.7% |

#### Different topKs

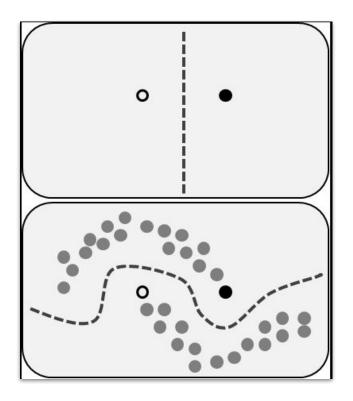
| k=3            |           | k=4            |           |  |
|----------------|-----------|----------------|-----------|--|
| avg(avg_score) | avg(arg%) | avg(avg_score) | avg(arg%) |  |
| 0.637          | 0.665     | 0.580          | 0.603     |  |

## **Backup Slides: Attention Layer (Example)**





## **Backup Slides: Semi-supervised Learning**



Small amount labeled data +

Large amount unlabeled data

- -> classification + clustering
- -> improvement of performance